1
|
Imhoff A, Sweeney NL, Bongard RD, Syrlybaeva R, Gupta A, Del Carpio E, Talipov MR, Garcia-Keller C, Crans DC, Ramchandran R, Sem DS. Structural and kinetic characterization of DUSP5 with a Di-phosphorylated tripeptide substrate from the ERK activation loop. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1385560. [PMID: 39749114 PMCID: PMC11694514 DOI: 10.3389/fchbi.2024.1385560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site. Methods Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments. We also report the full NMR chemical shift assignments of DUSP5 that now enable chemical shift perturbation and dynamics studies. Results and Discussion Both phosphates of the pT-E-pY tripeptide are dephosphorylated, based on 31P NMR; but, steady state kinetic studies of the tripeptide both as a substrate and as an inhibitor indicate a preference for binding and dephosphorylation of the phospho-tyrosine before the phospho-threonine. Catalytic efficiency (kcat/Km) is 3.7 M-1S-1 for T-E-pY vs 1.3 M-1S-1 for pT-E-Y, although the diphosphorylated peptide (pT-E-pY) is a better substrate than both, with kcat/Km = 18.2 M-1S-1. Steady state inhibition studies with the pNPP substrate yields Kis values for the peptide inhibitors of: 15.82 mM (pT-E-Y), 4.932 mM (T-E-pY), 1.672 mM (pT-E-pY). Steady state inhibition studies with pNPP substrate and with vanadate or phosphate inhibitors indicated competitive inhibition with Kis values of 0.0006122 mM (sodium vanadate) and 17.32 mM (sodium phosphate), similar to other Protein Tyrosine Phosphatases with an active site cysteine nucleophile that go through a five-coordinate high energy transition state or intermediate. Molecular dynamics (MD) studies confirm preferential binding of the diphosphorylated peptide, but with preference for binding the pY over the pT reside in the catalytic site proximal to the Cys263 nucleophile. Based on MD, the monophosphorylated peptide binds tighter if phosphorylated on the Tyr vs the Thr. And, if the starting pose of the docked diphosphorylated peptide has pT in the catalytic site, it will adjust to have the pY in the catalytic site, suggesting a dynamic shifting of the peptide orientation. 2D 1H-15N HSQC chemical shift perturbation studies confirm that DUSP5 with tripeptide bound is in a dynamic state, with extensive exchange broadening observed-especially of catalytic site residues. The availability of NMR chemical shift assignments enables additional future studies of DUSP5 binding to the ERK2 diphosphorylated activation loop. Summary These studies indicate a preference for pY before pT binding, but with ability to bind and dephosphorylate both residues, and with a dynamic active site pocket that accommodates multiple tripeptide orientations.
Collapse
Affiliation(s)
- Andrea Imhoff
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States
| | - Noreena L. Sweeney
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States
| | - Robert D. Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States
| | - Raulia Syrlybaeva
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM, United States
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI, United States
| | - Edgar Del Carpio
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Marat R. Talipov
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM, United States
| | - Costanza Garcia-Keller
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI, United States
| | - Daniel S. Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States
| |
Collapse
|
2
|
Cui X, Wang K, Wang T, Li J, Li C, Wang W, Wang H, Wang Z. Crystal Structure Analysis of Cationic Peroxidase from Proso Millet and Identification of Its Phosphatase Active Sites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6251-6259. [PMID: 34044543 DOI: 10.1021/acs.jafc.1c01606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proso millet peroxidase (PmPOD) belongs to class III plant peroxidases, which are enzymes typically characterized by their heme coenzymes. PmPOD exhibits not only heme-dependent peroxidase activity but also heme-independent phosphatase activity. Crystal structure analysis and sequence alignment showed that PmPOD contained a phosphatase catalytic loop CXXXXXR in its β-domain that is similar to the active site of a dual-specific phosphatase. Recombinant truncated proso millet peroxidase (tPmPOD), which contained only a conserved catalytic loop CXXXXXR of phosphatase, was found to exhibit phosphatase activity. Five tPmPOD mutants containing five different mutations in the phosphatase active sites exhibited significantly lower phosphatase activity compared to that of tPmPOD, indicating that the five amino acids play important roles in the phosphatase activity of tPmPOD. Finally, nucleophilic amino acid Cys192 formed a disulfide bond with Cys219 to protect the stability of a sulfhydryl group; thus, it may play a decisive role in the phosphatase activity of PmPOD.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan030006, China
| | - Ke Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan030006, China
| | - Tingfen Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan030006, China
| | - Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hongfei Wang
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|