1
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Nucara A, Ripanti F, Sennato S, Nisini G, De Santis E, Sefat M, Carbonaro M, Mango D, Minicozzi V, Carbone M. Influence of Cortisol on the Fibril Formation Kinetics of Aβ42 Peptide: A Multi-Technical Approach. Int J Mol Sci 2022; 23:ijms23116007. [PMID: 35682687 PMCID: PMC9180743 DOI: 10.3390/ijms23116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aβ42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aβ42 concentration ratio (ρ) close to 0.1 a faster organization of Aβ42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.
Collapse
Affiliation(s)
- Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
- Correspondence: (A.N.); (F.R.)
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (A.N.); (F.R.)
| | - Simona Sennato
- CNR-ISC Sede Sapienza, Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy;
| | - Giacomo Nisini
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
| | - Emiliano De Santis
- Department of Physics and Astronomy and Department of Chemistry-BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden;
| | - Mahta Sefat
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
| | - Marina Carbonaro
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Dalila Mango
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
3
|
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Ajamgard M. Influence of curcumin and rosmarinic acid on disrupting the general properties of Alpha-Synuclein oligomer: Molecular dynamics simulation. J Mol Graph Model 2021; 107:107963. [PMID: 34147836 DOI: 10.1016/j.jmgm.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/25/2023]
Abstract
Alpha-Synuclein (αS) is a protein involved in Parkinson's disease (PD) and is probably the main cause of the pathology of the disease. During pathogenesis, αS monomers aggregate, leading to the formation of a variety of oligomeric species. Recent research studies suggest that the oligomeric toxic species may be one of the main processes for pathology and disease. Here, we studied influence of two natural polyphenolic compounds, Curcumin (CUR) and Rosmarinic acid (RA), on disrupting the general properties of αS oligomer by molecular dynamics (MD) simulation method. The hydrophobic central domain of αS (NAC), is the most essential district responsible for protein self-aggregation; so, in this study, our systems have been developed to form a quintuplet NAC region of αS called 5mer; they have 10 and 20 CUR and RA molecules and a 5mer with no ligand. The several important and efficient analyzes were performed to investigate the effect of ligands on the structural properties of αS oligomers. The results indicated that both ligands can be successful in disrupting the original structure of αS oligomers; therefore, they can be considered suitable candidates for designing Parkinson's drugs.
Collapse
Affiliation(s)
- Mahrokh Rezaei Kamelabad
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran.
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Marzieh Ajamgard
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| |
Collapse
|
4
|
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A. The Interaction of Curcumin and Rosmarinic Acid with Non‐Amyloid‐Component Domain of Alpha‐Synuclein: A Molecular Dynamics Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mahrokh Rezaei Kamelabad
- Molecular Simulation Lab, Department of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Lab, Department of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|