1
|
Bathaei P, Imenshahidi M, Vahdati-Mashhadian N, Hosseinzadeh H. Effects of Crocus sativus and its active constituents on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03525-6. [PMID: 40167627 DOI: 10.1007/s00210-024-03525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 04/02/2025]
Abstract
Cytochrome P450 (CYP) enzymes play an important role in the biotransformation of drugs and endogenous substances. Clinical medications and herbal remedies can either enhance or inhibit the activity of CYP enzymes, leading to potential drug interactions between herbal supplements and prescribed medications. Such interactions can lead to serious consequences, especially for drugs with a narrow therapeutic index, such as digoxin, warfarin, and cyclosporine A. In this review article, we provide an updated review of the impact of saffron, and its active constituents, safranal and crocin, on the 12 major human CYP enzymes and possible drug interactions between saffron and prescription drugs. The available evidence indicates that saffron and its active constituents affect the expression or activity of some CYP isoforms, including the CYP1A1/2, CYP3A4, and CYP2E1 subfamily. Considering the important role of these CYPs in the biotransformation of frequently prescribed medications and the activation of procarcinogen into carcinogenic metabolites, it can be expected that the consumption of saffron and its active constituents may influence the pharmacokinetics and toxicity of several substances. In particular, given the critical role of CYP3A4 in drug metabolism, and saffron's inhibitory impact on this CYP enzyme, it appears that saffron's most significant interaction is linked to its inhibition of CYP3A4. In addition, the inhibitory effect of saffron on CYP1A1/2, and CYP2E1 expression can play a role in the chemopreventive effect of this herbal medicine. Additional research is crucial for evaluating the clinical significance of these interactions in patients who consume saffron along with prescription drugs and determining the dose that can lead to drug interactions.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
| | - Nasser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
| |
Collapse
|
2
|
Amararathna M, Hoskin DW, Goralski KB, Rupasinghe HPV. Suppression of NNK Metabolism by Anthocyanin-Rich Haskap Berry Supplementation Through Modulation of P450 Enzymes. Pharmaceuticals (Basel) 2024; 17:1615. [PMID: 39770457 PMCID: PMC11728747 DOI: 10.3390/ph17121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Oral supplementation of anthocyanins-rich haskap (Lonicera caerulea) berry (HB) reduces 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis, cytotoxicity, DNA damage, and modulated inflammation in vitro and in vivo. The procarcinogen NNK is metabolically activated by cytochrome P450 (P450) enzymes, producing reactive metabolites that induce lung carcinogenesis. Hypothesis: Therefore, we hypothesized that the HB-modulated protective effect against NNK could be due to its ability to suppress P450 enzymes. Methods: HB (6 mg of cyanidin-3-O-glucoside [C3G] in 0.2 g of HB/mouse/day) was given to A/J mice as a dietary supplement following subsequent administration of NNK (100 mg/kg body weight). The liver tissues of mice were analyzed to determine the expression of P450s and metabolites. Results: HB upregulated the expression of cyp2a4 and cyp2a5 mRNA and nuclear receptor/transcription factor (PPARα) in NNK-deprived hepatic tissues. With NNK, HB downregulated the expression of cyp2a4 and cyp2a5 and facilitated the formation of non-carcinogenic NNK metabolites. Molecular docking indicated a high binding affinity and strong hydrophobic interactions between C3G and its major metabolites, peonidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin and cyanidin with Cyp2a5 and with human P450 homologue CYP2A13. Conclusions: HB could be a potential dietary supplement to inhibit the P450 activated NNK carcinogenic metabolites formation. Hence, inhibiting the activation of NNK by lung CYP2A13 through dietary HB supplementation could be a strategy to reduce lung carcinogenesis among smokers. Understanding the effect of HB on the activity of CYP2A13 in human studies is necessary before recommending these natural compounds as therapeutics.
Collapse
Affiliation(s)
- Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada;
| | - Kerry B. Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada;
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
- College of Pharmacy, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Division of Hematology/Oncology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada;
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
3
|
Korolainen H, Olżyńska A, Pajerski W, Chytrosz-Wrobel P, Vattulainen I, Kulig W, Cwiklik L. Assessing vitamin E acetate as a proxy for E-cigarette additives in a realistic pulmonary surfactant model. Sci Rep 2024; 14:23805. [PMID: 39394419 PMCID: PMC11470143 DOI: 10.1038/s41598-024-75301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Additives in vaping products, such as flavors, preservatives, or thickening agents, are commonly used to enhance user experience. Among these, Vitamin E acetate (VEA) was initially thought to be harmless but has been implicated as the primary cause of e-cigarette or vaping product use-associated lung injury, a serious lung disease. In our study, VEA serves as a proxy for other e-cigarette additives. To explore its harmful effects, we developed an exposure system to subject a pulmonary surfactant (PSurf) model to VEA-rich vapor. Through detailed analysis and atomic-level simulations, we found that VEA tends to cluster into aggregates on the PSurf surface, inducing deformations and weakening its essential elastic properties, critical for respiratory cycle function. Apart from VEA, our experiments also indicate that propylene glycol and vegetable glycerin, widely used in e-liquid mixtures, or their thermal decomposition products, alter surfactant properties. This research provides molecular-level insights into the detrimental impacts of vaping product additives on lung health.
Collapse
Affiliation(s)
- Hanna Korolainen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Wojciech Pajerski
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
| | - Paulina Chytrosz-Wrobel
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland.
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
4
|
Vikram HP, Kumar TP, Kumar G, Beeraka NM, Deka R, Suhail SM, Jat S, Bannimath N, Padmanabhan G, Chandan RS, Kumar P, Gurupadayya B. Nitrosamines crisis in pharmaceuticals - Insights on toxicological implications, root causes and risk assessment: A systematic review. J Pharm Anal 2024; 14:100919. [PMID: 38799236 PMCID: PMC11126534 DOI: 10.1016/j.jpha.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 05/29/2024] Open
Abstract
The presence of N-nitroso compounds, particularly N-nitrosamines, in pharmaceutical products has raised global safety concerns due to their significant genotoxic and mutagenic effects. This systematic review investigates their toxicity in active pharmaceutical ingredients (APIs), drug products, and pharmaceutical excipients, along with novel analytical strategies for detection, root cause analysis, reformulation strategies, and regulatory guidelines for nitrosamines. This review emphasizes the molecular toxicity of N-nitroso compounds, focusing on genotoxic, mutagenic, carcinogenic, and other physiological effects. Additionally, it addresses the ongoing nitrosamine crisis, the development of nitrosamine-free products, and the importance of sensitive detection methods and precise risk evaluation. This comprehensive overview will aid molecular biologists, analytical scientists, formulation scientists in research and development sector, and researchers involved in management of nitrosamine-induced toxicity and promoting safer pharmaceutical products.
Collapse
Affiliation(s)
- Hemanth P.R. Vikram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
- Xenone Healthcare Pvt. Ltd., New Delhi, 110076, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Gunjan Kumar
- Xenone Healthcare Pvt. Ltd., New Delhi, 110076, India
| | - Narasimha M. Beeraka
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russian Federation
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Ananthapuramu, 515721, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rajashree Deka
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Sheik Mohammed Suhail
- Department of Pharmacology, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Sandeep Jat
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, India
| | - Namitha Bannimath
- Department of Pharmacology, University of Galway, Galway, H91 TK33, Ireland
| | - Gayatiri Padmanabhan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Ravandur S. Chandan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| |
Collapse
|
5
|
Carmo Bastos ML, Silva-Silva JV, Neves Cruz J, Palheta da Silva AR, Bentaberry-Rosa AA, da Costa Ramos G, de Sousa Siqueira JE, Coelho-Ferreira MR, Percário S, Santana Barbosa Marinho P, Marinho AMDR, de Oliveira Bahia M, Dolabela MF. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16050765. [PMID: 37242548 DOI: 10.3390/ph16050765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer is among the major causes of death from neoplasia leading causes of death worldwide, with high incidence rates and problems related to its treatment. Here, we outline how Geissospermum sericeum exerts antitumor activity on the ACP02 cell line (human gastric adenocarcinoma) and the mechanism of cell death. The ethanol extract and fractions, neutral fraction and alkaloid fraction, were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid (geissoschizoline N4-methylchlorine) identified by NMR. The cytotoxicity activity of the samples (ethanol extract, neutral fraction, alkaloid fraction, and geissoschizoline N4-methylchlorine) in HepG2 and VERO cells was determined by MTT. The ACP02 cell line was used to assess the anticancer potential. Cell death was quantified with the fluorescent dyes Hoechst 33342, propidium iodide, and fluorescein diacetate. The geissoschizoline N4-methylchlorine was evaluated in silico against caspase 3 and 8. In the antitumor evaluation, there was observed a more significant inhibitory effect of the alkaloid fraction (IC50 18.29 µg/mL) and the geissoschizoline N4-methylchlorine (IC50 12.06 µg/mL). However, geissoschizoline N4-methylchlorine showed lower cytotoxicity in the VERO (CC50 476.0 µg/mL) and HepG2 (CC50 503.5 µg/mL) cell lines, with high selectivity against ACP02 cells (SI 39.47 and 41.75, respectively). The alkaloid fraction showed more significant apoptosis and necrosis in 24 h and 48 h, with increased necrosis in higher concentrations and increased exposure time. For the alkaloid, apoptosis and necrosis were concentration- and time-dependent, with a lower necrosis rate. Molecular modeling studies demonstrated that geissoschizoline N4-methylchlorine could occupy the active site of caspases 3 and 8 energetically favorably. The results showed that fractionation contributed to the activity with pronounced selectivity for ACP02 cells, and geissoschizoline N4-methylchlor is a promising candidate for caspase inhibitors of apoptosis in gastric cancer. Thus, this study provides a scientific basis for the biological functions of Geissospermum sericeum, as well as demonstrates the potential of the geissoschizoline N4-methylchlorine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Mirian Letícia Carmo Bastos
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Victor Silva-Silva
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Jorddy Neves Cruz
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | - Gisele da Costa Ramos
- Post-Graduate Program in Chemistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Márlia Regina Coelho-Ferreira
- Emílio Goeldi Paraense Museum, Coordination of Botany, Ministry of Science, Technology, Innovation and Communications, Belém 66077-830, PA, Brazil
| | - Sandro Percário
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | - Marcelo de Oliveira Bahia
- Laboratory of Human Cytogenetic, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Maria Fâni Dolabela
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
6
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
7
|
Asif M, Saquib M, Rahman Khan A, Aqil F, salem Almalki A, Ali Alasmary F, Singh J, Nasibullah M. Synthesis of Functionalized 2′,5‐Oxo‐spiro[furan‐2,3′‐indoline]‐3‐carboxylate Derivatives as Antiproliferative Agents: ADMET Studies, and Molecular Docking against P2Y12 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Mohd Asif
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Mohammad Saquib
- Department of Chemistry University of Allahabad Prayagraj (Allahabad) 211002 India
| | - Abdul Rahman Khan
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Farrukh Aqil
- UofL Health-Brown Cancer Center and Department of Medicine University of Louisville Louisville KY40202 USA
| | - Amani salem Almalki
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Fatmah Ali Alasmary
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Jaya Singh
- Department of Chemistry LRPG College Sahibabad Ghaziabad 201005 India
| | - Malik Nasibullah
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| |
Collapse
|
8
|
da Silva DF, de Souza JL, da Costa DM, Costa DB, Moreira POL, Fonseca ALD, Varotti FDP, Cruz JN, Dos Santos CBR, Alves CQ, Leite FHA, Brandão HN. Antiplasmodial activity of coumarins isolated from Polygala boliviensis: in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:13383-13403. [PMID: 36744465 DOI: 10.1080/07391102.2023.2173295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Polygala boliviensis is found in the Brazilian semiarid region. This specie is little chemically and biologically studied. Polygala spp. have different metabolites, especially coumarins. Studies indicate that coumarins have antimalarial potential, denoting the importance of researching new active compounds from plants, since the resistance of Plasmodium strains to conventional therapy has increased. The present study aimed to evaluate the antiplasmodial activity of auraptene and poligalen against a chloroquine-resistant strain of Plasmodium falciparum. Coumarins were isolated from P. boliviensis by open column chromatography and identified by Nuclear Magnetic Resonance Spectroscopy. A cytotoxicity assay was carried out using MTT test, and the in vitro antiplasmodial activity was evaluated using the W2 strain. The antiplasmodial activity results found were IC50=0.171 ± 0.016 for auraptene and 0.164 ± 0.012 for poligalen; the selectivity indexes were 78.71 and 609.76, respectively. Inverse virtual screening in the BRAMMT database by OCTOPUS 1.2 was applied to coumarins to find potential P. falciparum targets and showed higher affinity energy of auraptene for purine nucleoside phosphorylase (PfPNP) and of poligalen for dihydroorotate dehydrogenase (PfDHODH). Molecular Dynamics studies (MD and MM-GBSA) approach were applied to calculate binding energies against selected P. falciparum targets and showed that all coumarins were stable at the binding site during simulations. Furthermore, energies were favorable for complexation. This is the first report of auraptene in P. boliviensis species and of in vitro antiplasmodial activity of auraptene and poligalen. In silico studies indicated that the mechanism of action of coumarins is the inhibition of PfPNP and PfDHODH.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danielle Figuerêdo da Silva
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Jéssica Lima de Souza
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Diego Mota da Costa
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - David Bacelar Costa
- Departamento de Saúde, Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Paulo Otávio Lourenço Moreira
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Amanda Luisa da Fonseca
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Fernando de Pilla Varotti
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jorddy Neves Cruz
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Modelagem e Química Computacional, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Cleydson Breno Rodrigues Dos Santos
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Modelagem e Química Computacional, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Clayton Queiroz Alves
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Franco Henrique Andrade Leite
- Departamento de Saúde, Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Hugo Neves Brandão
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
9
|
Alhawarri MB, Dianita R, Rawa MSA, Nogawa T, Wahab HA. Potential Anti-Cholinesterase Activity of Bioactive Compounds Extracted from Cassia grandis L.f. and Cassia timoriensis DC. PLANTS (BASEL, SWITZERLAND) 2023; 12:344. [PMID: 36679057 PMCID: PMC9862305 DOI: 10.3390/plants12020344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors remain the primary therapeutic drug that can alleviate Alzheimer's disease's (AD) symptoms. Several Cassia species have been shown to exert significant anti-AChE activity, which can be an alternative remedy for AD. Cassia timoriensis and Cassia grandis are potential plants with anti-AChE activity, but their phytochemical investigation is yet to be further conducted. The aims of this study were to identify the phytoconstituents of C. timoriensis and C. grandis and evaluate their inhibitory activity against AChE and butyrylcholinesterase (BChE). Two compounds were isolated for the first time from C. timoriensis: arachidyl arachidate (1) and luteolin (2). Five compounds were identified from C. grandis: β-sitosterol (3), stigmasterol (4), cinnamic acid (5), 4-hydroxycinnamic acid (6), and hydroxymethylfurfural (7). Compound 2 showed significant inhibition towards AChE (IC50: 20.47 ± 1.10 µM) and BChE (IC50: 46.15 ± 2.20 µM), followed by 5 (IC50: 40.5 ± 1.28 and 373.1 ± 16.4 µM) and 6 (IC50: 43.4 ± 0.61 and 409.17 ± 14.80 µM) against AChE and BChE, respectively. The other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that 2 showed good binding affinity towards TcAChE (PDB ID: 1W6R) and HsBChE (PDB ID: 4BDS). It formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS, 2.04 Å), along with hydrophobic interactions with the anionic site and PAS (TRP84 and TYR121, respectively). Additionally, 2 formed three H-bonds with the binding site residues: one bond with catalytic triad, HIS438 at distance 2.05 Å, and the other two H-bonds with GLY115 and GLU197 at distances of 2.74 Å and 2.19 Å, respectively. The evidence of molecular interactions of 2 may justify the relevance of C. timoriensis as a cholinesterase inhibitor, having more promising activity than C. grandis.
Collapse
Affiliation(s)
- Maram B. Alhawarri
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Roza Dianita
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Mira Syahfriena Amir Rawa
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
10
|
Northrup TF, Stotts AL, Suchting R, Khan AM, Klawans MR, Green C, Hoh E, Hovell MF, Matt GE, Quintana PJE. Handwashing Results in Incomplete Nicotine Removal from Fingers of Individuals who Smoke: A Randomized Controlled Experiment. Am J Perinatol 2022; 39:1634-1642. [PMID: 34634832 DOI: 10.1055/s-0041-1736287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Tobacco residue, also known as third-hand smoke (THS), contains toxicants and lingers in dust and on surfaces and clothes. THS also remains on hands of individuals who smoke, with potential transfer to infants during visitation while infants are hospitalized in neonatal intensive care units (NICUs), raising concerns (e.g., hindered respiratory development) for vulnerable infants. Previously unexplored, this study tested handwashing (HW) and sanitization efficacy for finger-nicotine removal in a sample of adults who smoked and were visiting infants in an NICU. STUDY DESIGN A cross-sectional sample was recruited to complete an interview, carbon monoxide breath samples, and three nicotine wipes of separate fingers (thumb, index, and middle). Eligible participants (n = 14) reported current smoking (verified with breath samples) and were randomly assigned to 30 seconds of HW (n = 7) or alcohol-based sanitization (n = 7), with the order of finger wipes both counterbalanced and randomly assigned. After randomization, the first finger was wiped for nicotine. Participants then washed or sanitized their hands and finger two was wiped 5 minutes later. An interview assessing tobacco/nicotine use and exposure was then administered, followed by a second breath sample and the final finger wipe (40-60 minutes after washing/sanitizing). RESULTS Generalized linear mixed models found that HW was more effective than sanitizer for nicotine removal but failed to completely remove nicotine. CONCLUSIONS Without proper protections (e.g., wearing gloves and gowns), NICU visitors who smoke may inadvertently expose infants to THS. Research on cleaning protocols are needed to protect vulnerable medical populations from THS and associated risks. KEY POINTS · NICU infants may be exposed to THS via visitors.. · THS is not eliminated by HW or sanitizing.. · THS removal protections for NICU infants are needed..
Collapse
Affiliation(s)
- Thomas F Northrup
- Department of Family and Community Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Angela L Stotts
- Department of Family and Community Medicine, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, UTHealth, McGovern Medical School, Houston, Texas
| | - Amir M Khan
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Michelle R Klawans
- Department of Family and Community Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Charles Green
- Department of Pediatrics, Center for Clinical Research and Evidence-Based Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Eunha Hoh
- Division of Environmental Health, School of Public Health, San Diego State University, San Diego, California
| | - Melbourne F Hovell
- Center for Behavioral Epidemiology and Community Health, Graduate School of Public Health, Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, California
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego, California
| | - Penelope J E Quintana
- Division of Environmental Health, School of Public Health, San Diego State University, San Diego, California
| |
Collapse
|
11
|
Zhang H, Lu L, Zhao C, Liu Q, Zhou Q, Zhang Y, Pu Y, Wang S, Liu R, Yin L. Lipid metabolism disorders contribute to hepatotoxicity of ICR mice induced by nitrosamines exposure. ENVIRONMENT INTERNATIONAL 2022; 167:107423. [PMID: 35908391 DOI: 10.1016/j.envint.2022.107423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Health risks caused by crucial environmental carcinogens N-nitrosamines triggered ubiquitous attention. As the liver exerted vital function through metabolic process, lipid metabolism disorders have been confirmed as potential drivers for toxicological effects, and the mechanisms of lipid regulation related to hepatotoxicity induced by N-nitrosamines remained largely unclear. In this study, we comprehensively explored the disturbance of hepatic lipid homeostasis in mice induced by nitrosamines. The results implied that nitrosamines exposure induced hepatotoxicity accompanied by liver injury, inflammatory infiltration, and hepatic edema. Lipidomics profiling analysis indicated the decreased levels of phosphatidic acids (PA), phosphatidylcholines (PC), phosphatidylethanolamines (PE), lyso-phosphatidylcholines (LPC), lyso-phosphatidylethanolamines (LPE), diacylglycerols (DAG) and triacylglycerols (TAG), the elevation of ceramides (Cer) and decomposition of free fatty acids (FFA) in high-dose nitrosamines exposure group. Importantly, nitrosamines exposure promoted fatty acid oxidation (FAO) by facilitating fatty acid uptake and decomposition, together with the upregulation of genes associated with FAO accompanied by the activation of inflammatory cytokines TNF-α, IL-1β and NLRP3. Furthermore, fatty acid translocase CD36-mediated fatty acid oxidation was correlated with the enhancement of oxidative stress in the liver caused by nitrosamines exposure. Overall, our results contributed to the new strategies to interpret the early toxic effects of nitrosamines exposure.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
12
|
Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells. Molecules 2022; 27:molecules27154851. [PMID: 35956805 PMCID: PMC9369970 DOI: 10.3390/molecules27154851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.
Collapse
|
13
|
Abrishami-Kia Z, Sadati-Bizaki T, Ghare-Tapeh EA, Harijani SM. Managing MMP-2, MMP-9, VEGFR-2, TGFβ-1, and TIMP-1 in NNK-induced lung carcinoma by nonchemical interventions in female rats. Toxicol Rep 2022; 9:1261-1267. [DOI: 10.1016/j.toxrep.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
|
14
|
Pan Y, Chang J, Xu P, Xie Y, Yang L, Hao W, Li J, Wan B. Twenty-four hours of Thiamethoxam: In vivo and molecular dynamics simulation study on the toxicokinetic and underlying mechanisms in quails (Coturnix japonica). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128159. [PMID: 34979383 DOI: 10.1016/j.jhazmat.2021.128159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids is the most widely used insecticide, its contamination has led to sustained bird population declines. However, the toxicokinetic and underlying mechanisms of neonicotinoid toxicity in birds are largely unknown. Thiamethoxam (TMX), as a representative neonicotinoid insecticide, is now widely detected in most environmental medium and animal bodies. In this study, 5 mg/kg body weight TMX (potential environmental intake level) were orally administrated to male Japanese quails (Coturnix japonica). We found a rapid absorption, distribution, metabolism and elimination of TMX in quails in a period of 24 h, with the main metabolite, clothianidin (CLO), being extensively distributed and rapidly eliminated from tissues as well. The maximum plasm concentration of CLO was consistent with wild birds. Metabolomics analysis and followed determination of liver enzymes mRNA expression indicated the rapid metabolism was mediated mainly by CYPs and GSTs that involved riboflavin metabolism and glutathione metabolism pathways upon TMX exposure. Molecular dynamic simulation showed the strongest binding interaction in quail CYP2H1-TMX and CYP3A12-CLO complexes among a set of CYPs-substrate. The present study elucidated toxicokinetic and underlying metabolic mechanisms of TMX in quails at environmentally-relevant concentration, the findings would facilitate the understanding of potential risks of TMX and its metabolites to birds.
Collapse
Affiliation(s)
- Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China; Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China.
| |
Collapse
|
15
|
Wang Z, Li R, Wu Q, Duan J, Tan Y, Sun X, Chen R, Shi H, Wang M. Enantioselective Metabolic Mechanism and Metabolism Pathway of Pydiflumetofen in Rat Liver Microsomes: In Vitro and In Silico Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2520-2528. [PMID: 35184556 DOI: 10.1021/acs.jafc.1c06928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pydiflumetofen (PYD) has been used worldwide. However, the enantioselective fate of PYD within mammals is not clear. Thus, the enantioselective metabolism and its potential mechanisms of PYD were explored via in vitro and in silico. Consistent results were observed between metabolism and enzyme kinetics experiments, with S-PYD metabolizing faster than R-PYD in rat liver microsomes. Moreover, CYP3A1 and carboxylesterase 1 were found to be major enzymes participating in the metabolism of PYD. Based on the computational results, S-PYD bound with CYP3A1 and carboxylesterase 1 more tightly with lower binding free energy than R-PYD, explaining the mechanism of enantioselective metabolism. Nine phase I metabolites of PYD were identified, and metabolic pathways of PYD were speculated. This study is the first to clarify the metabolism of PYD in mammals, and further research to evaluate the toxicological implications of these metabolites will help in assessing the risk of PYD.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rou Chen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Liang S, Wang Q, Qi X, Liu Y, Li G, Lu S, Mou L, Chen X. Deciphering the Mechanism of Gilteritinib Overcoming Lorlatinib Resistance to the Double Mutant I1171N/F1174I in Anaplastic Lymphoma Kinase. Front Cell Dev Biol 2021; 9:808864. [PMID: 35004700 PMCID: PMC8733690 DOI: 10.3389/fcell.2021.808864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) is validated as a therapeutic molecular target in multiple malignancies, such as non-small cell lung cancer (NSCLC). However, the feasibility of targeted therapies exerted by ALK inhibitors is inevitably hindered owing to drug resistance. The emergence of clinically acquired drug mutations has become a major challenge to targeted therapies and personalized medicines. Thus, elucidating the mechanism of resistance to ALK inhibitors is helpful for providing new therapeutic strategies for the design of next-generation drug. Here, we used molecular docking and multiple molecular dynamics simulations combined with correlated and energetical analyses to explore the mechanism of how gilteritinib overcomes lorlatinib resistance to the double mutant ALK I1171N/F1174I. We found that the conformational dynamics of the ALK kinase domain was reduced by the double mutations I1171N/F1174I. Moreover, energetical and structural analyses implied that the double mutations largely disturbed the conserved hydrogen bonding interactions from the hinge residues Glu1197 and Met1199 in the lorlatinib-bound state, whereas they had no discernible adverse impact on the binding affinity and stability of gilteritinib-bound state. These discrepancies created the capacity of the double mutant ALK I1171N/F1174I to confer drug resistance to lorlatinib. Our result anticipates to provide a mechanistic insight into the mechanism of drug resistance induced by ALK I1171N/F1174I that are resistant to lorlatinib treatment in NSCLC.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Qing Wang
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xuesen Qi
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Yudi Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Guozhen Li
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangyu Chen
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
18
|
Ahmad P, Alvi SS, Iqbal J, Khan MS. Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of α-amylase and α-glucosidase activity: an in-silico and in-vitro approach. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02799-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Castro ALG, Cruz JN, Sodré DF, Correa-Barbosa J, Azonsivo R, de Oliveira MS, de Sousa Siqueira JE, da Rocha Galucio NC, de Oliveira Bahia M, Burbano RMR, do Rosário Marinho AM, Percário S, Dolabela MF, Vale VV. Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
A theoretical study to the loliolide molecule and its isomers: a study by circular dichroism, QTAIM, and NMR theoretical methods. J Mol Model 2021; 27:116. [PMID: 33788017 DOI: 10.1007/s00894-021-04725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
The determination of an absolute configuration is a challenge in the structure elucidation of chiral natural products. With advancements in computational chemistry of chiroptical spectroscopy, the time-dependent density functional theory (TDDFT) calculation has emerged as a very promising tool. This paper attempts to illustrate the applicability of computational approaches in comparison with experimental data to understand the conformation, interaction, and stabilization of the loliolide's isomers. The quantum chemical calculations were used from optimized geometries of the (6R,7aS)-, (6S,7aR)-, (6R,7aR)-, and (6S,7aS)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one. The spectroscopic values were obtained for 13C NMR isotropic shielding by GIAO method in mPW1PW91/cc-pVTZ level, in TDDFT at the ωB97X-D/cc-pVTZ level to the circular dichroism, and in theoretical analyses of non-covalent interaction to study the isomer's stability. The TDDFT calculation of circular dichroism can be used to quantify the individual isomers and the nature of excitation in the molecule. The (6R,7aS) and (6R,7aR) isomers present a higher stability due to electronegativity associated at the hydroxyl group.
Collapse
|
21
|
Almeida VM, Dias ÊR, Souza BC, Cruz JN, Santos CBR, Leite FHA, Queiroz RF, Branco A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J Biomol Struct Dyn 2021; 40:7574-7583. [PMID: 33739225 DOI: 10.1080/07391102.2021.1900916] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the effect of a methoxylated fraction from Vellozia dasypus Seub on myeloperoxidase (MPO)-chlorinating activity and subsequent in silico assays for binding profile prediction. Therefore, the ethyl acetate extract of aerial parts from Vellozia dasypus Seub was fractionated on open-column chromatography containing SiO2 and eluted with solvent in crescent polarity to yield a fraction with a mixture of flavonols quercetin 3-O-methyl ether (1) and 6-C-methyl quercetin 3-O-methyl ether (2). Their chemical structures were proposed by HPLC coupled to photodiode array (HPLC-DAD) and mass spectrometer using electrospray ionization multistage analysis (HPLC-MS/MS). The fraction enriched with compounds 1 and 2 inhibited more efficiently the in vitro MPO-chlorinating activity (IC50 = 40 µg/mL) than the ethyl acetate extract (IC50 = 64.0 µg/mL). Molecular docking studies revealed that these compounds interact with MPO active pocket similarly to trifluoromethyl-substituted aromatic hydroxamate, a well-known MPO inhibitor, co-crystallized at the MPO binding site (PDB ID: 4C1M). Molecular dynamics trajectories confirmed that these two molecules interact with the MPO binding site with a similar energetic pattern when compared to the crystallographic ligand. Taken together, these data expand the sources of phenolic natural compounds that may be further investigated against inflammation-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Verônica M Almeida
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil.,Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Êuder R Dias
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil.,Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Bruno C Souza
- Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Jorddy N Cruz
- Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Cleydson B R Santos
- Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Franco H A Leite
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil.,Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Raphael F Queiroz
- Department of Natural Sciences, State University of Southwestern Bahia, Vitória da Conquista, Brazil
| | - Alexsandro Branco
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil.,Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
22
|
Santana de Oliveira M, Pereira da Silva VM, Cantão Freitas L, Gomes Silva S, Nevez Cruz J, de Aguiar Andrade EH. Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chem Biodivers 2021; 18:e2000982. [PMID: 33587821 DOI: 10.1002/cbdv.202000982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
Bignonia nocturna (Bignoniaceae) is a plant used for medicinal purposes by the Amazonian indigenous peoples. To date, there have been no reported studies on its toxicity. The present study aimed to evaluate the chemical composition of essential oils obtained from Bignonia nocturna by different extraction techniques. In addition, an in silico study of the molecular interactions was performed using molecular docking and molecular dynamics. The extractions were carried out by hydrodistillation, simultaneous distillation-extraction, and steam distillation, using samples collected from the Amazon in summer and winter. The chemical composition was analyzed by GC/FID and GC/MS, and the cytotoxic activity in Artemia salina Leach was evaluated. The maximum yield (1.38 % w/w) was obtained by hydrodistillation. The results indicated that benzaldehyde predominated in all the fractions of both the volatile concentrate and the essential oils. In addition, the oil proved to be highly toxic to Artemia salina. The computer simulation results indicated that benzaldehyde strongly interacts with acetylcholinesterase, which is the likely interaction mechanism responsible for the cytotoxicity.
Collapse
Affiliation(s)
- Mozaniel Santana de Oliveira
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Valdeline Maria Pereira da Silva
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Lucas Cantão Freitas
- Food Science and Technology, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, 66075-110, PA, Brazil
| | - Sebastião Gomes Silva
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Jorddy Nevez Cruz
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Eloisa Helena de Aguiar Andrade
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil.,Faculty of Chemistry, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, 66075-110, PA, Brazil
| |
Collapse
|
23
|
Yang Y, Wang X, Gao Y, Wang H, Niu X. Insight into the Dual inhibitory Mechanism of verbascoside targeting serine/threonine phosphatase Stp1 against Staphylococcus aureus. Eur J Pharm Sci 2021; 157:105628. [PMID: 33115673 DOI: 10.1016/j.ejps.2020.105628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
The eukaryotic-like serine/threonine phosphatase (Stp1) is an enzyme-dependent protein phosphatase involved in regulating various virulence factors of Staphylococcus aureus. Owing to its role in S. aureus infections, Stp1 has become a potential target for antibiotic development. Unfortunately, there are very few reports describing Stp1 inhibitors. Using virtual screening, we have identified a potent and effective Stp1 inhibitor, verbascoside (VBS). Interestingly, the kinetics of the enzymatic reaction revealed that this natural inhibitor acts via both competitive and allosteric mechanisms. To explore the mechanism of interaction between VBS and Stp1, standard molecular dynamics (MD) simulations were performed for the Stp1-VBS complex. Consistent with the experimental results, competitive and allosteric binding sites for VBS were identified in Stp1. Met39, Gly41, His42, Arg161, and Asn162 residues were involved in the competitive binding of VBS, while Arg122, Ser136, Asp137, Asn142, and Val145 residues were associated with the allosteric binding of VBS. The contributions of these residues were confirmed by amino acid site-directed mutagenesis and fluorescence quenching experiments. This work demonstrates that VBS is a potent anti-virulence compound against S. aureus infection, laying the foundation for the further development of novel anti-virulence agents.
Collapse
Affiliation(s)
- Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
24
|
Munjal NS, Shukla R, Singh TR. Physicochemical characterization of paclitaxel prodrugs with cytochrome 3A4 to correlate solubility and bioavailability implementing molecular docking and simulation studies. J Biomol Struct Dyn 2021; 40:5983-5995. [PMID: 33491578 DOI: 10.1080/07391102.2021.1875881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Prodrugs are biologically inactive drug molecules that may be developed through rational drug design with an objective to improve a drug's pharmaceutical and pharmacokinetic properties. Paclitaxel, a highly potent anticancer drug, is directed against many cancers like breast cancer, ovarian cancer, lung cancer, head and neck tumors, non-small cell lung cancer, and Kaposi's sarcoma, etc. Along with its excellent antitumor activity the drug had a major limitation of low water solubility. To overcome this limitation of this nanomolar active drug many prodrugs were formed in the past. Though increase in the solubility of the drug was obtained but that may or may not account for its increase in bioavailability. CYP3A4 liver enzymes are responsible for the metabolism of fifty percent of the drugs and are major metabolizing enzyme for paclitaxel. Phosphate prodrugs are well known to account the insolubility of many drugs and thus increasing their bioavailability also. In this study, we calculated the ADMET properties of a dataset of twenty phosphate prodrugs of paclitaxel. On the basis of reflection of three favourable properties, ten prodrugs were chosen for further docking studies against CYP3A4. Finally, three prodrugs showing unfavourable binding affinities were selected for Molecular Dynamics Simulations and from this in-silico study we identified that all the three selected prodrugs were unstable as compared to the paclitaxel. The instability of these prodrugs showed their lesser interaction with the CYP3A4 and hence contributing more towards its bioavailability. Thus the three suggested prodrugs those were studied in-silico for oral bioavailability can be further validated for gastrointestinal cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nupur S Munjal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India.,Centre of Excellence in Healthcare Technologies and Informatics (CEHTI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
25
|
Neto RDAM, Santos CBR, Henriques SVC, Machado LDO, Cruz JN, da Silva CHTDP, Federico LB, Oliveira EHCD, de Souza MPC, da Silva PNB, Taft CA, Ferreira IM, Gomes MRF. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:2204-2216. [DOI: 10.1080/07391102.2020.1839562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Raimundo de A. M. Neto
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Cleydson B. R. Santos
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | - Letícia de O. Machado
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Jorddy N. Cruz
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | - Leonardo B. Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | | | | | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Físicas, Urca, Rio de Janeiro, Brasil
| | | | - Madson R. F. Gomes
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| |
Collapse
|
26
|
Identification of Potential COX-2 Inhibitors for the Treatment of Inflammatory Diseases Using Molecular Modeling Approaches. Molecules 2020; 25:molecules25184183. [PMID: 32932669 PMCID: PMC7570943 DOI: 10.3390/molecules25184183] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs are inhibitors of cyclooxygenase-2 (COX-2) that were developed in order to avoid the side effects of non-selective inhibitors of COX-1. Thus, the present study aims to identify new selective chemical entities for the COX-2 enzyme via molecular modeling approaches. The best pharmacophore model was used to identify compounds within the ZINC database. The molecular properties were determined and selected with Pearson’s correlation for the construction of quantitative structure–activity relationship (QSAR) models to predict the biological activities of the compounds obtained with virtual screening. The pharmacokinetic/toxicological profiles of the compounds were determined, as well as the binding modes through molecular docking compared to commercial compounds (rofecoxib and celecoxib). The QSAR analysis showed a fit with R = 0.9617, R2 = 0.9250, standard error of estimate (SEE) = 0.2238, and F = 46.2739, with the tetra-parametric regression model. After the analysis, only three promising inhibitors were selected, Z-964, Z-627, and Z-814, with their predicted pIC50 (−log IC50) values, Z-814 = 7.9484, Z-627 = 9.3458, and Z-964 = 9.5272. All candidates inhibitors complied with Lipinski’s rule of five, which predicts a good oral availability and can be used in in vitro and in vivo tests in the zebrafish model in order to confirm the obtained in silico data.
Collapse
|
27
|
Costa EB, Silva RC, Espejo-Román JM, Neto MFDA, Cruz JN, Leite FHA, Silva CHTP, Pinheiro JC, Macêdo WJC, Santos CBR. Chemometric methods in antimalarial drug design from 1,2,4,5-tetraoxanes analogues. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:677-695. [PMID: 32854545 DOI: 10.1080/1062936x.2020.1803961] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
A set of 23 steroidal 1,2,4,5-tetraoxane analogues were studied using quantum-chemical method (B3LYP/6-31 G*) and multivariate analyses (PCA, HCA, KNN and SIMCA) in order to calculate the properties and correlate them with antimalarial activity (log RA) against Plasmodium falciparum clone D-6 from Sierra Leone. PCA results indicated 99.94% of the total variance and it was possible to divide the compounds into two classes: less and more active. Descriptors responsible for separating were: highest occupied molecular orbital energy (HOMO), bond length (O1-O2), Mulliken electronegativity (χ) and Bond information content (BIC0). We use HCA, KNN and SIMCA to explain relationships between molecular properties and biological activity of a training set and to predict antimalarial activity (log RA) of 13 compounds (#24-36) with unknown biological activity. We apply molecular docking simulations to identify intermolecular interactions with a selected biological target. The results obtained in multivariate analysis aided in the understanding of the activity of the new compound's design (#24-36). Thus, through chemometric analyses and docking molecular study, we propose theoretical synthetic routes for the most promising compounds 28, 30, 32 and 36 that can proceed to synthesis steps and in vitro and in vivo assays.
Collapse
Affiliation(s)
- E B Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal ABC , Santo André, Brazil
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Naturais e Exatas, Universidade Federal do Pará , Belém, Brazil
| | - R C Silva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto, Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto, Brazil
- Laboratorio de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá , Macapá, Brazil
| | - J M Espejo-Román
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada , Granada, Spain
| | - M F de A Neto
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana , Feira de Santana, Brazil
| | - J N Cruz
- Laboratorio de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá , Macapá, Brazil
| | - F H A Leite
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana , Feira de Santana, Brazil
| | - C H T P Silva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto, Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto, Brazil
| | - J C Pinheiro
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Naturais e Exatas, Universidade Federal do Pará , Belém, Brazil
| | - W J C Macêdo
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Naturais e Exatas, Universidade Federal do Pará , Belém, Brazil
- Laboratorio de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá , Macapá, Brazil
- Laboratório de Modelagem Molecular e Simulação de Sistema, Universidade Federal Rural da Amazônia - Campus Capanema , Capanema, Brazil
| | - C B R Santos
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Naturais e Exatas, Universidade Federal do Pará , Belém, Brazil
- Laboratorio de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá , Macapá, Brazil
- Laboratório de Modelagem Molecular e Simulação de Sistema, Universidade Federal Rural da Amazônia - Campus Capanema , Capanema, Brazil
| |
Collapse
|
28
|
Leão RP, Cruz JV, da Costa GV, Cruz JN, Ferreira EFB, Silva RC, de Lima LR, Borges RS, dos Santos GB, Santos CBR. Identification of New Rofecoxib-Based Cyclooxygenase-2 Inhibitors: A Bioinformatics Approach. Pharmaceuticals (Basel) 2020; 13:E209. [PMID: 32858871 PMCID: PMC7559105 DOI: 10.3390/ph13090209] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclooxygenase-2 receptor is a therapeutic target for planning potential drugs with anti-inflammatory activity. The selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was selected as a pivot molecule to perform virtual ligand-based screening from six commercial databases. We performed the search for similarly shaped Rapid Overlay of Chemical Structures (ROCS) and electrostatic (EON) compounds. After, we used pharmacokinetic and toxicological parameters to determine the best potential compounds, obtained through the softwares QikProp and Derek, respectively. Then, the compounds proceeded to the molecular anchorage study, which showed promising results of binding affinity with the hCOX-2 receptor: LMQC72 (∆G = -11.0 kcal/mol), LMQC36 (∆G = -10.6 kcal/mol), and LMQC50 (∆G = -10.2 kcal/mol). LMQC72 and LMQC36 showed higher binding affinity compared to rofecoxib (∆G = -10.4 kcal/mol). Finally, molecular dynamics (MD) simulations were used to evaluate the interaction of the compounds with the target hCOX-2 during 150 ns. In all MD simulation trajectories, the ligands remained interacting with the protein until the end of the simulation. The compounds were also complexing with hCOX-2 favorably. The compounds obtained the following affinity energy values: rofecoxib: ΔGbind = -45.31 kcal/mol; LMQC72: ΔGbind = -38.58 kcal/mol; LMQC36: ΔGbind = -36.10 kcal/mol; and LMQC50: ΔGbind = -39.40 kcal/mol. The selected LMQC72, LMQC50, and LMQC36 structures showed satisfactory pharmacokinetic results related to absorption and distribution. The toxicological predictions of these compounds did not display alerts for possible toxic groups and lower risk of cardiotoxicity compared to rofecoxib. Therefore, future in vitro and in vivo studies are needed to confirm the anti-inflammatory potential of the compounds selected here with bioinformatics approaches based on rofecoxib ligand.
Collapse
Affiliation(s)
- Rozires P. Leão
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Josiane V. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Glauber V. da Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Elenilze F. B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
- Laboratory of Organic Chemistry and Biochemistry, University of State of Amapá, Macapá 68900-070, AP, Brazil
| | - Raí C. Silva
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14090-901, SP, Brazil
| | - Lúcio R. de Lima
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Rosivaldo S. Borges
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
| | - Gabriela B. dos Santos
- Institute of Collective Health, Federal University of Western Pará, Santarém 68040-255, PA, Brazil;
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| |
Collapse
|
29
|
Chemical Composition, Antimicrobial Properties of Siparuna guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of its Major Chemical Constituent. Molecules 2020; 25:molecules25173852. [PMID: 32854178 PMCID: PMC7503653 DOI: 10.3390/molecules25173852] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022] Open
Abstract
The essential oil of Siparuna guianensis was obtained by hydrodistillation. The identification of the chemical compounds was performed by gas chromatography coupled with mass spectrometry (GC/MS). Antimicrobial activity was investigated for four microorganisms: Streptococcus mutans (ATCC 3440), Enterococcus faecalis (ATCC 4083), Escherichia coli (ATCC 25922), and Candida albicans (ATCC-10231). The studies of doping and molecular dynamics were performed with the molecule that presented the highest concentration of drug–target proteins, 1IYL (C. albicans), 1C14 (E. coli), 2WE5 (E. faecalis), and 4TQX (S. mutans). The main compounds identified were: Curzerene (7.1%), γ-Elemene (7.04%), Germacrene D (7.61%), trans-β-Elemenone (11.78%), and Atractylone (18.65%). Gram positive bacteria and fungi were the most susceptible to the effects of the essential oil. The results obtained in the simulation showed that the major compound atractylone interacts with the catalytic sites of the target proteins, forming energetically favourable systems and remaining stable during the period of molecular dynamics.
Collapse
|
30
|
Neto MFDA, Santos CBRD, Magalhães-Junior JT, Leite FHA. Identification of novel Aedes aegypti odorant-binding protein 1 modulators by ligand and structure-based approaches and bioassays. J Biomol Struct Dyn 2020; 40:117-129. [PMID: 32815781 DOI: 10.1080/07391102.2020.1808074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arboviruses are a group of viruses (e.g. Dengue, Chikungunya and Yellow fever virus) that are transmitted by arthropod vectors, which Aedes aegipty is the vector of main viruses in Americas. This vector is responsible to 2.4 millions of arboviruses cases in Brazil with less than a thousand deaths annually. Despite of epidemiological data, arboviruses treatment is symptomatic and the vaccine control is not effective, which makes the vector control against A. aegipty a promising strategy to diseases control. One way to achieve this goal is to development of A. aegipty sensitive olfactory modulators. Odorant binding protein 1 from A. aegypti (AaegOBP1) is essential in sensory communication, and is the first filter in odorant selection, which makes this target promising to development of new repellents. For this reason, hierarchical virtual screening (ligand-based pharmacophore model and molecular docking) together volatility filter was applied at Sigma-Aldrich database (n = 126.851) to prioritize potential molecules to repellency assays. Three compounds showed adequate stereo-electronic requirements (QFIT> 81.53), score to AaegOBP1 binding site (Score > 36.0) and volatile properties and it was chosen for repellency assays. ZINC00170981 and ZINC00131924 showed a dose-response behavior, while ZINC01621824 did not showed activity in repellency assays. Finally, Molecular Dynamics (MD) was employed to hypothesize the stability of protein-ligand complexes. According to RMSD, RMSF and binding free energy data, ZINC00170981 and ZINC00131924 were able to stabilize AaegOBP1 binding-site during the trajectory by interactions with key residues such as His77, Leu89 and Trp114). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Cleydson Breno Rodrigues Dos Santos
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | | |
Collapse
|
31
|
Mascarenhas AMS, de Almeida RBM, de Araujo Neto MF, Mendes GO, da Cruz JN, dos Santos CBR, Botura MB, Leite FHA. Pharmacophore-based virtual screening and molecular docking to identify promising dual inhibitors of human acetylcholinesterase and butyrylcholinesterase. J Biomol Struct Dyn 2020; 39:6021-6030. [DOI: 10.1080/07391102.2020.1796791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ana Mércia Silva Mascarenhas
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brasil
| | | | | | - Géssica Oliveira Mendes
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brasil
| | - Jorddy Neves da Cruz
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Cleydson Breno Rodrigues dos Santos
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Mariana Borges Botura
- Laboratório de Toxicologia, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brasil
| | | |
Collapse
|
32
|
Molecular basis of the beta-lactamase protein using comparative modelling, drug screening and molecular dynamics studies to understand the resistance of β-lactam antibiotics. J Mol Model 2020; 26:200. [PMID: 32638150 DOI: 10.1007/s00894-020-04459-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Beta-lactamase (ampC) in general causes the onset of antibiotic resistance in pathogenic bacteria against the β-lactam antibiotics. Morganella morganii which belongs to the Proteae tribe of the Enterobacteriaceae family is a Gram-negative bacillus. Gram-negative bacteria are the key problematic agents among the human population in overexpressing resistance against β-lactam antibiotics. These β-lactam antibiotics being experimentally well studied still lack the key information and mechanism for their resistance. The structural information of the ampC protein is unknown and poorly studied; hence, it is the need of the hour to find effective inhibitors against it. In our study, the prediction of the three-dimensional structure of ampC protein from Morganella morganii was performed using a comparative modelling approach. The predicted structure was energetically stabilized and functional conformations were mapped through 100-ns molecular dynamics simulation runs. Also, Ramachandran plot shows the model to be stereo-chemically stable with most residues found under core allowed regions. Drug screening with several experimentally tested inhibitors was then confirmed to check the activity against ampC protein using an AutoDock tool. The results suggested OncoglabrinolC molecule as the best inhibitor (out of 21 drug molecules) with a binding affinity of - 11.44 kcal/mol. Anti-bacterial/anti-parasitic inhibitors have not only been used against bacterial infections, but later reports have also shown them to work against deadly viruses such as SARS-CoV2. This key structural and inhibitory information is certain to help in the discovery of specific and potent substitute therapeutic drugs and the development of experimental procedures against human infection.
Collapse
|
33
|
|
34
|
Muhammad A, Khunrae P, Sutthibutpong T. Effects of oligolignol sizes and binding modes on a GH11 xylanase inhibition revealed by molecular modeling techniques. J Mol Model 2020; 26:124. [DOI: 10.1007/s00894-020-04383-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
35
|
Lonikar N, Choudhari P, Bhusnuare O. Insilico analysis of marine indole alkaloids for design of adenosine A2A receptor antagonist. J Biomol Struct Dyn 2020; 39:3515-3522. [PMID: 32375596 DOI: 10.1080/07391102.2020.1765874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurological disease is the disease associated with most of geriatric population in the world. The diseases like Alzheimer's disease and Parkinson's disease are associated with the change in the life style in current era. Treatment of these diseases normally focused on the agents which can able to manipulate the neurotransmitter release, so it is associated with severe side effects. Adenosine receptors are the upcoming targets for the inflammatory as well as neurological diseases as agents like istradefylline are in the clinical use. Marine natural products are the rich source of the valuable drug like substances, number marine alkaloids are known for their ability to pass blood brain barrier (BBB) which is major hurdle in the neurological drug discovery. Here, we report the virtual screening of some marine alkaloids for adenosine 2 receptor binding potential. Results indicated topsentin C, 6'-debromohamacanthin, 6-hydroxydiscodermindole and discodermindole are having excellent binding affinity towards the adenosine 2A receptor than other selected alkaloids.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nitin Lonikar
- Channabasweshwar Pharmacy College(Degree), Latur, India.,Department of Pharmaceutical Chemistry, Shivlingeshwar College of Pharmacy, Almala, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | | |
Collapse
|
36
|
Santos CBR, Santos KLB, Cruz JN, Leite FHA, Borges RS, Taft CA, Campos JM, Silva CHTP. Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. J Biomol Struct Dyn 2020; 39:3115-3127. [PMID: 32338151 DOI: 10.1080/07391102.2020.1761878] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adenosine A2A receptor (A2AR) is the predominant receptor in immune cells, where its activation triggers cAMP-mediated immunosuppressive signaling and the underlying inhibition of T cells activation and T cells-induced effects mediated by cAMP-dependent kinase proteins mechanisms. In this study, were used ADME/Tox, molecular docking and molecular dynamics simulations to investigate selective adenosine A2AR agonists as potential anti-inflammatory drugs. As a result, we obtained two promising compounds (A and B) that have satisfactory pharmacokinetic and toxicological properties and were able to interact with important residues of the A2AR binding cavity and during the molecular dynamics simulations were able to keep the enzyme complexed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cleydson B R Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Graduate Program in Medicinal Chemistry and Molecular Modeling, Institute of Health Sciences, Federal University of Pará, Belém, Brazil.,Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelton L B Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Graduate Program in Medicinal Chemistry and Molecular Modeling, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Jorddy N Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Franco H A Leite
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-Bahia, Brazil
| | - Rosivaldo S Borges
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Carlton A Taft
- Brazilian Center for Physical Research, Rio de Janeiro, Brazil
| | - Joaquín M Campos
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Biosanitary Institute of Granada (Ibs.GRANADA), Campus of Cartuja, University of Granada, Granada, Spain
| | - Carlos H T P Silva
- Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
37
|
Ma G, Yu H, Han C, Jia Y, Wei X, Wang Z. Binding and Metabolism of Brominated Flame Retardant β-1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Human Microsomal P450 Enzymes: Insights from Computational Studies. Chem Res Toxicol 2020; 33:1487-1496. [DOI: 10.1021/acs.chemrestox.0c00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cenyang Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Jia
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
38
|
Identification of Novel Chemical Entities for Adenosine Receptor Type 2A Using Molecular Modeling Approaches. Molecules 2020; 25:molecules25051245. [PMID: 32164183 PMCID: PMC7179438 DOI: 10.3390/molecules25051245] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.
Collapse
|
39
|
Soares TA, Wahab HA. Outlook on the Development and Application of Molecular Simulations in Latin America. J Chem Inf Model 2020; 60:435-438. [PMID: 32009389 DOI: 10.1021/acs.jcim.0c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Naphthoquinones isolated from Eleutherine plicata herb: in vitro antimalarial activity and molecular modeling to investigate their binding modes. Med Chem Res 2020. [DOI: 10.1007/s00044-019-02498-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
da Costa KS, Galúcio JM, da Costa CHS, Santana AR, dos Santos Carvalho V, do Nascimento LD, Lima e Lima AH, Neves Cruz J, Alves CN, Lameira J. Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach To Find Novel Mosquito Repellents. ACS OMEGA 2019; 4:22475-22486. [PMID: 31909330 PMCID: PMC6941369 DOI: 10.1021/acsomega.9b03157] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 05/31/2023]
Abstract
Odorant-binding proteins (OBPs) are the main olfactory proteins of mosquitoes, and their structures have been widely explored to develop new repellents. In the present study, we combined ligand- and structure-based virtual screening approaches using as a starting point 1633 compounds from 71 botanical families obtained from the Essential Oil Database (EssOilDB). Using as reference the crystallographic structure of N,N-diethyl-meta-toluamide interacting with the OBP1 homodimer of Anopheles gambiae (AgamOBP1), we performed a structural and pharmacophoric similarity search to select potential natural products from the library. Thymol acetate, 4-(4-methyl phenyl)-pentanal, thymyl isovalerate, and p-cymen-8-yl demonstrated a favorable chemical correlation with DEET and also had high-affinity interactions with the OBP binding pocket that molecular dynamics simulations showed to be stable. To the best of our knowledge, this is the first study to evaluate on a large scale the potentiality of NPs from essential oils as inhibitors of the mosquito OBP1 using in silico approaches. Our results could facilitate the design of novel repellents with improved selectivity and affinity to the protein binding pocket and can shed light on the mechanism of action of these compounds against insect olfactory recognition.
Collapse
Affiliation(s)
- Kauȇ Santana da Costa
- Institute
of Biodiversity, Federal University of Western
Pará, 68035-110 Santarém, Pará, Brazil
| | - João Marcos Galúcio
- Institute
of Biodiversity, Federal University of Western
Pará, 68035-110 Santarém, Pará, Brazil
| | | | - Amanda Ruslana Santana
- Department
of Pharmaceutical Sciences, Federal University
of Pará, 66060-902 Belém, Pará, Brazil
| | - Vitor dos Santos Carvalho
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | | | - Anderson Henrique Lima e Lima
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | - Jorddy Neves Cruz
- Department
of Pharmaceutical Sciences, Federal University
of Pará, 66060-902 Belém, Pará, Brazil
| | - Claudio Nahum Alves
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| |
Collapse
|