1
|
Rajeeve AD, Yamuna R, Namboori PKK. Elucidating the potential of EGFR mutated NSCLC and identifying its multitargeted inhibitors. Sci Rep 2025; 15:3649. [PMID: 39880831 PMCID: PMC11779874 DOI: 10.1038/s41598-024-83868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related fatalities globally, accounting for the highest mortality rate among both men and women. Mutations in the epidermal growth factor receptor (EGFR) gene are frequently found in non-small cell lung cancer (NSCLC). Since curcumin and CB[2]UN support various medicinal applications in drug delivery and design, we investigated the effect of curcumin and CB[2]UN-based drugs in controlling EGFR-mutant NSCLC through a dodecagonal computational approach. Molecular docking studies revealed that the ligands curcumin (-6.9 kcal/mol) and CB[2]UN (-8.1 kcal/mol) bound more strongly to the EGFR-mutant NSCLC proteins with 2ITX and 2ITV, respectively. Molecular dynamics simulation (50 ns) investigation of protein-ligand complexes using RMSD, RMSF, Rg, and SASA indicated that curcumin and CB[2]UN with EGFR-mutant proteins are kinetically stable. In addition, MMPBSA/MMGBSA analysis confirmed the thermodynamic stability of each curcumin and CB[2]UN protein-ligand complex. Finally, KDeep absolute binding affinity calculations show energies of -6.13 kcal/mol and - 5.26 kcal/mol for 2ITX-CUR and 2ITV-CB[2]UN protein-ligand complexes, respectively. Thus, our dodecagonal strategy reveals that 2ITX-CUR and 2ITV-CB[2]UN are more likely to form protein-ligand complexes with more significant binding affinities and excellent stability throughout the 50 ns simulation time.
Collapse
Affiliation(s)
- Anakha D Rajeeve
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Ramasamy Yamuna
- Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| | - P K Krishnan Namboori
- Amrita School of Artificial Intelligences, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Computational Chemistry Group (CCG), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
- Biopharma Solutions, Coimbatore, 641105, India.
| |
Collapse
|
2
|
Sun Z, He Q, Gong Z, Kalhor P, Huai Z, Liu Z. A General Picture of Cucurbit[8]uril Host–Guest Binding: Recalibrating Bonded Interactions. Molecules 2023; 28:molecules28073124. [PMID: 37049887 PMCID: PMC10095826 DOI: 10.3390/molecules28073124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Atomic-level understanding of the dynamic feature of host–guest interactions remains a central challenge in supramolecular chemistry. The remarkable guest binding behavior of the Cucurbiturils family of supramolecular containers makes them promising drug carriers. Among Cucurbit[n]urils, Cucurbit[8]uril (CB8) has an intermediate portal size and cavity volume. It can exploit almost all host–guest recognition motifs formed by this host family. In our previous work, an extensive computational investigation of the binding of seven commonly abused and structurally diverse drugs to the CB8 host was performed, and a general dynamic binding picture of CB8-guest interactions was obtained. Further, two widely used fixed-charge models for drug-like molecules were investigated and compared in great detail, aiming at providing guidelines in choosing an appropriate charge scheme in host-guest modelling. Iterative refitting of atomic charges leads to improved binding thermodynamics and the best root-mean-squared deviation from the experimental reference is 2.6 kcal/mol. In this work, we focus on a thorough evaluation of the remaining parts of classical force fields, i.e., the bonded interactions. The widely used general Amber force fields are assessed and refitted with generalized force-matching to improve the intra-molecular conformational preference, and thus the description of inter-molecular host–guest interactions. The interaction pattern and binding thermodynamics show a significant dependence on the modelling parameters. The refitted system-specific parameter set improves the consistency of the modelling results and the experimental reference significantly. Finally, combining the previous charge-scheme comparison and the current force-field refitting, we provide general guidelines for the theoretical modelling of host–guest binding.
Collapse
|
3
|
Liu X, Zheng L, Cong Y, Gong Z, Yin Z, Zhang JZH, Liu Z, Sun Z. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: II. regression and dielectric constant. J Comput Aided Mol Des 2022; 36:879-894. [PMID: 36394776 DOI: 10.1007/s10822-022-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/29/2022] [Indexed: 11/18/2022]
Abstract
End-point free energy calculations as a powerful tool have been widely applied in protein-ligand and protein-protein interactions. It is often recognized that these end-point techniques serve as an option of intermediate accuracy and computational cost compared with more rigorous statistical mechanic models (e.g., alchemical transformation) and coarser molecular docking. However, it is observed that this intermediate level of accuracy does not hold in relatively simple and prototypical host-guest systems. Specifically, in our previous work investigating a set of carboxylated-pillar[6]arene host-guest complexes, end-point methods provide free energy estimates deviating significantly from the experimental reference, and the rank of binding affinities is also incorrectly computed. These observations suggest the unsuitability and inapplicability of standard end-point free energy techniques in host-guest systems, and alteration and development are required to make them practically usable. In this work, we consider two ways to improve the performance of end-point techniques. The first one is the PBSA_E regression that varies the weights of different free energy terms in the end-point calculation procedure, while the second one is considering the interior dielectric constant as an additional variable in the end-point equation. By detailed investigation of the calculation procedure and the simulation outcome, we prove that these two treatments (i.e., regression and dielectric constant) are manipulating the end-point equation in a somehow similar way, i.e., weakening the electrostatic contribution and strengthening the non-polar terms, although there are still many detailed differences between these two methods. With the trained end-point scheme, the RMSE of the computed affinities is improved from the standard ~ 12 kcal/mol to ~ 2.4 kcal/mol, which is comparable to another altered end-point method (ELIE) trained with system-specific data. By tuning PBSA_E weighting factors with the host-specific data, it is possible to further decrease the prediction error to ~ 2.1 kcal/mol. These observations along with the extremely efficient optimized-structure computation procedure suggest the regression (i.e., PBSA_E as well as its GBSA_E extension) as a practically applicable solution that brings end-point methods back into the library of usable tools for host-guest binding. However, the dielectric-constant-variable scheme cannot effectively minimize the experiment-calculation discrepancy for absolute binding affinities, but is able to improve the calculation of affinity ranks. This phenomenon is somehow different from the protein-ligand case and suggests the difference between host-guest and biomacromolecular (protein-ligand and protein-protein) systems. Therefore, the spectrum of tools usable for protein-ligand complexes could be unsuitable for host-guest binding, and numerical validations are necessary to screen out really workable solutions in these 'prototypical' situations.
Collapse
Affiliation(s)
- Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Yalong Cong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhihao Gong
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixiang Yin
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China. .,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. .,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China. .,Department of Chemistry, New York University, NY, NY, 10003, USA.
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Sun Z, Zheng L, Wang K, Huai Z, Liu Z. Primary vs secondary: Directionalized guest coordination in β-cyclodextrin derivatives. Carbohydr Polym 2022; 297:120050. [DOI: 10.1016/j.carbpol.2022.120050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023]
|
5
|
Du G, Yang W, Liao X, Gao C, Yang J, Yang B. Synthesis, Characterization and Thermal Controlled Release Of 2‐Isopropyl‐N,2,3‐Trimethylbutyramide with Acyclic Cucurbit[n]urils Inclusion Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang Du
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Waixiang Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan 650500 P.R. China
| |
Collapse
|
6
|
Sun Z, Huai Z, He Q, Liu Z. A General Picture of Cucurbit[8]uril Host-Guest Binding. J Chem Inf Model 2021; 61:6107-6134. [PMID: 34818004 DOI: 10.1021/acs.jcim.1c01208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Describing, understanding, and designing complex interaction networks within macromolecular systems remain challenging in modern chemical research. Host-guest systems, despite their relative simplicity in both the structural feature and interaction patterns, still pose problems in theoretical modeling. The barrel-shaped supramolecular container cucurbit[8]uril (CB8) shows promising functionalities in various areas, e.g., catalysis and molecular recognition. It can stably coordinate a series of structurally diverse guests with high affinities. In this work, we examine the binding of seven commonly abused drugs to the CB8 host, aiming at providing a general picture of CB8-guest binding. Extensive sampling of the configurational space of these host-guest systems is performed, and the binding pathway and interaction patterns of CB8-guest complexes are investigated. A thorough comparison of widely used fixed-charge models for drug-like molecules is presented. Iterative refitting of the atomic charges suggests significant conformation dependence of charge generation. The initial model generated at the original conformation could be inaccurate for new conformations explored during conformational search, and the newly fitted charge set improves the prediction-experiment correlation significantly. Our investigations of the configurational space of CB8-drug complexes suggest that the host-guest interactions are more complex than expected. Despite the structural simplicities of these molecules, the conformational fluctuations of the host and the guest molecules and orientations of functional groups lead to the existence of an ensemble of binding modes. The insights of the binding thermodynamics, performance of fixed-charge models, and binding patterns of the CB8-guest systems are useful for studying and elucidating the binding mechanism of other host-guest complexes.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center (XARC), 9F, Tower A, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District, Beijing 100083, P.R. China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd., North Century Avenue 333, Ningbo 315100, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Marcisz M, Zacharias M, Samsonov SA. Modeling Protein-Glycosaminoglycan Complexes: Does the Size Matter? J Chem Inf Model 2021; 61:4475-4485. [PMID: 34494837 PMCID: PMC8479808 DOI: 10.1021/acs.jcim.1c00664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Docking glycosaminoglycans (GAGs) has been challenging because
of the complex nature of these long periodic linear and negatively
charged polysaccharides. Although standard docking tools like Autodock3
are successful when docking GAGs up to hexameric length, they experience
challenges to properly dock longer GAGs. Similar limitations concern
other docking approaches typically developed for docking ligands of
limited size to proteins. At the same time, most of more advanced
docking approaches are challenging for a user who is inexperienced
with complex in silico methodologies. In this work,
we evaluate the binding energies of complexes with different lengths
of GAGs using all-atom molecular dynamics simulations. Based on this
analysis, we propose a new docking protocol for long GAGs that consists
of conventional docking of short GAGs and further elongation with
the use of a coarse-grained representation of the GAG parts not being
in direct contact with its protein receptor. This method automated
by a simple script is straightforward to use within the Autodock3
framework but also useful in combination with other standard docking
tools. We believe that this method with some minor case-specific modifications
could also be used for docking other linear charged polymers.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Martin Zacharias
- Center of Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
Xiao S, Jin LY, Wang JP, Sun GY. The mechanism of the selective binding ability between opiate metabolites and acyclic cucurbit[4]uril: an MD/DFT study. Phys Chem Chem Phys 2021; 23:2186-2192. [PMID: 33438686 DOI: 10.1039/d0cp05728b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subtle changes in molecular structure often lead to significant differences in host-guest interactions, which result in different host-guest recognition capabilities and dynamics behaviours in complex formation. Herein, we reveal the influence of the guest substituents on host-guest molecular recognition by molecular dynamics (MD) simulation and density functional theory (DFT) approaches. The results suggest that the binding energy barrier of acyclic cucurbit[4]uril (ACB[4]) with opiate metabolites gradually decreases. The methyl group in morphine (MOR) and morphine-3-glucuronide (M3G) strengthens the hydrophobicity of the guest, while depressing the energy loss of the desolvation of polar groups (e.g. hydroxyl) inside the ACB[4] cavity. However, in M3G, the 3-glucuronide group located outside the ACB[4] host cavity effectively alleviates the unfavourable desolvation effect of the hydroxyl and increases the binding constant by two orders of magnitude (compared with normorphine (NMOR)). Our findings stressed the essentiality of the binding mode and intermolecular noncovalent interactions in the host-guest selective binding ability.
Collapse
Affiliation(s)
- Song Xiao
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, China.
| | | | | | | |
Collapse
|
9
|
Cucurbit[7]uril as a possible nanocarrier for the antichagasic benznidazole: a computational approach. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01014-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|