1
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. Nat Struct Mol Biol 2024; 31:1468-1481. [PMID: 38684930 DOI: 10.1038/s41594-024-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces phosphatidylserine externalization, a key step in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements underlying groove opening and how lipids reorganize outside the closed groove remain unknown. Here we directly visualize how lipids associate at the closed groove of Ca2+-bound fungal nhTMEM16 in nanodiscs using cryo-EM. Functional experiments pinpoint lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryo-EM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Omar E Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Lin TY, Chung SC. CLEAPA: a framework for exploring the conformational landscape of cryo-EM using energy-aware pathfinding algorithm. Bioinformatics 2024; 40:btae345. [PMID: 38837333 PMCID: PMC11167209 DOI: 10.1093/bioinformatics/btae345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
MOTIVATION Cryo-electron microscopy (cryo-EM) is a powerful technique for studying macromolecules and holds the potential for identifying kinetically preferred transition sequences between conformational states. Typically, these sequences are explored within two-dimensional energy landscapes. However, due to the complexity of biomolecules, representing conformational changes in two dimensions can be challenging. Recent advancements in reconstruction models have successfully extracted structural heterogeneity from cryo-EM images using higher-dimension latent space. Nonetheless, creating high-dimensional conformational landscapes in the latent space and then searching for preferred paths continues to be a formidable task. RESULTS This study introduces an innovative framework for identifying preferred trajectories within high-dimensional conformational landscapes. Our method encompasses the search for the minimum energy path in the graph, where edge weights are determined based on the energy estimation at each node using local density. The effectiveness of this approach is demonstrated by identifying accurate transition states in both synthetic and real-world datasets featuring continuous conformational changes. AVAILABILITY AND IMPLEMENTATION The CLEAPA package is available at https://github.com/tengyulin/energy_aware_pathfinding/.
Collapse
Affiliation(s)
- Teng-Yu Lin
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Szu-Chi Chung
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
3
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553029. [PMID: 37609346 PMCID: PMC10441378 DOI: 10.1101/2023.08.11.553029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces the externalization of phosphatidylserine, a key molecule in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove, and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements involved in groove opening and of how lipids reorganize outside the closed groove remain unknown. Using cryogenic electron microscopy, we directly visualize how lipids associate at the closed groove of Ca2+-bound nhTMEM16 in nanodiscs. Functional experiments pinpoint the lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryoEM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College
| | - Omar E. Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College
- Department of Physiology and Biophysics, Weill Cornell Medical College
- Department of Biochemistry, Weill Cornell Medical College
| |
Collapse
|
4
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. RESEARCH SQUARE 2023:rs.3.rs-3256633. [PMID: 37645847 PMCID: PMC10462188 DOI: 10.21203/rs.3.rs-3256633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces the externalization of phosphatidylserine, a key molecule in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove, and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements involved in groove opening and of how lipids reorganize outside the closed groove remain unknown. Using cryogenic electron microscopy, we directly visualize how lipids associate at the closed groove of Ca2+-bound nhTMEM16 in nanodiscs. Functional experiments pinpoint the lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryoEM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College
| | - Omar E. Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College
- Department of Physiology and Biophysics, Weill Cornell Medical College
- Department of Biochemistry, Weill Cornell Medical College
| |
Collapse
|
5
|
Seitz E, Frank J, Schwander P. Beyond ManifoldEM: geometric relationships between manifold embeddings of a continuum of 3D molecular structures and their 2D projections. DIGITAL DISCOVERY 2023; 2:702-717. [PMID: 37312683 PMCID: PMC10259371 DOI: 10.1039/d2dd00128d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 06/15/2023]
Abstract
ManifoldEM is an established method of geometric machine learning developed to extract information on conformational motions of molecules from their projections obtained by cryogenic electron microscopy (cryo-EM). In a previous work, in-depth analysis of the properties of manifolds obtained for simulated ground-truth data from molecules exhibiting domain motions has led to improvements of this method, as demonstrated in selected applications of single-particle cryo-EM. In the present work this analysis has been extended to investigate the properties of manifolds constructed by embedding data from synthetic models represented by atomic coordinates in motion, or three-dimensional density maps from biophysical experiments other than single-particle cryo-EM, with extensions to cryo-electron tomography and single-particle imaging with a X-ray free-electron laser. Our theoretical analysis revealed interesting relationships between all these manifolds, which can be exploited in future work.
Collapse
Affiliation(s)
- Evan Seitz
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York NY 10032 USA
- Department of Biological Sciences, Columbia University New York NY 10027 USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York NY 10032 USA
- Department of Biological Sciences, Columbia University New York NY 10027 USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee Milwaukee WI 53211 USA
| |
Collapse
|
6
|
Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Structure 2023; 31:4-19. [PMID: 36584678 PMCID: PMC9825670 DOI: 10.1016/j.str.2022.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 12/30/2022]
Abstract
Molecular machines, such as polymerases, ribosomes, or proteasomes, fulfill complex tasks requiring the thermal energy of their environment. They achieve this by restricting random motion along a path of possible conformational changes. These changes are often directed through engagement with different cofactors, which can best be compared to a Brownian ratchet. Many molecular machines undergo three major steps throughout their functional cycles, including initialization, repetitive processing, and termination. Several of these major states have been elucidated by cryogenic electron microscopy (cryo-EM). However, the individual steps for these machines are unique and multistep processes themselves, and their coordination in time is still elusive. To measure these short-lived intermediate events by cryo-EM, the total reaction time needs to be shortened to enrich for the respective pre-equilibrium states. This approach is termed time-resolved cryo-EM (trEM). In this review, we sum up the methodological development of trEM and its application to a range of biological questions.
Collapse
Affiliation(s)
- Sascha Josef Amann
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Demian Keihsler
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tatyana Bodrug
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David Haselbach
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Institute for Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
7
|
Seitz E, Acosta-Reyes F, Maji S, Schwander P, Frank J. Recovery of Conformational Continuum From Single-Particle Cryo-EM Images: Optimization of ManifoldEM Informed by Ground Truth. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2022; 8:462-478. [PMID: 36258699 PMCID: PMC9575687 DOI: 10.1109/tci.2022.3174801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This work is based on the manifold-embedding approach to study biological molecules exhibiting continuous conformational changes. Previous work established a method-now termed ManifoldEM-capable of reconstructing 3D movies and accompanying free-energy landscapes from single-particle cryo-EM images of macromolecules exercising multiple conformational degrees of freedom. While ManifoldEM has proven its viability in several experimental studies, critical limitations and uncertainties have been found throughout its extended development and use. Guided by insights from studies with cryo-EM ground-truth data, simulated from atomic structures undergoing conformational changes, we have built a novel framework, ESPER, able to retrieve the free-energy landscape and respective 3D Coulomb potential maps for all states simulated. As shown by a direct comparison of ground truth vs. recovered maps, and analysis of experimental data from the 80S ribosome and ryanodine receptor, ESPER offers substantial improvements relative to the previous work.
Collapse
Affiliation(s)
- Evan Seitz
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 USA, and also with the Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Francisco Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 USA
| | - Suvrajit Maji
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 USA, and also with the Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
8
|
Lee BHJ, Arya G. Assembly mechanism of surface-functionalized nanocubes. NANOSCALE 2022; 14:3917-3928. [PMID: 35225318 DOI: 10.1039/d1nr07995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Faceted nanoparticles can be used as building blocks to assemble nanomaterials with exceptional optical and catalytic properties. Recent studies have shown that surface functionalization of such nanoparticles with organic molecules, polymer chains, or DNA can be used to control the separation distance and orientation of particles within their assemblies. In this study, we computationally investigate the mechanism of assembly of nanocubes grafted with short-chain molecules. Our approach involves computing the interaction free energy landscape of a pair of such nanocubes via Monte Carlo simulations and using the Dijkstra algorithm to determine the minimum free energy pathway connecting key states in the landscape. We find that the assembly pathway of nanocubes is very rugged involving multiple energy barriers and metastable states. Analysis of nanocube configurations along the pathway reveals that the assembly mechanism is dominated by sliding motion of nanocubes relative to each other punctuated by their local dissociation at grafting points involving lineal separation and rolling motions. The height of energy barriers between metastable states depends on factors such as the interaction strength and surface roughness of the nanocubes and the steric repulsion from the grafts. These results imply that the observed assembly configuration of nanocubes depends not only on their globally stable minimum free energy state but also on the assembly pathway leading to this state. The free energy landscapes and assembly pathways presented in this study along with the proposed guidelines for engineering such pathways should be useful to researchers aiming to achieve uniform nanostructures from self-assembly of faceted nanoparticles.
Collapse
Affiliation(s)
- Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| | - Gaurav Arya
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Kolimi N, Pabbathi A, Saikia N, Ding F, Sanabria H, Alper J. Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches. J Phys Chem B 2021; 125:10404-10418. [PMID: 34506140 PMCID: PMC8474109 DOI: 10.1021/acs.jpcb.1c02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Out-of-equilibrium
processes are ubiquitous across living organisms
and all structural hierarchies of life. At the molecular scale, out-of-equilibrium
processes (for example, enzyme catalysis, gene regulation, and motor
protein functions) cause biological macromolecules to sample an ensemble
of conformations over a wide range of time scales. Quantifying and
conceptualizing the structure–dynamics to function relationship
is challenging because continuously evolving multidimensional energy
landscapes are necessary to describe nonequilibrium biological processes
in biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques
to understanding biological macromolecular function. We argue that
it is time to revisit how we probe and model functional out-of-equilibrium
biomolecular dynamics. We suggest that developing integrated single-molecule
multiparametric force–fluorescence instruments and using advanced
molecular dynamics simulations to study out-of-equilibrium biomolecules
will provide a path towards understanding the principles of and mechanisms
behind the structure–dynamics to function paradigm in biological
macromolecules.
Collapse
Affiliation(s)
- Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
10
|
Giraldo-Barreto J, Ortiz S, Thiede EH, Palacio-Rodriguez K, Carpenter B, Barnett AH, Cossio P. A Bayesian approach to extracting free-energy profiles from cryo-electron microscopy experiments. Sci Rep 2021; 11:13657. [PMID: 34211017 PMCID: PMC8249403 DOI: 10.1038/s41598-021-92621-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule's conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles. In this work, we propose the cryo-BIFE method (cryo-EM Bayesian Inference of Free-Energy profiles), which uses a path collective variable to extract free-energy profiles and their uncertainties from cryo-EM images. We test the framework on several synthetic systems where the imaging parameters and conditions were controlled. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. We then use the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover not only the most probable conformation (used to generate a high-resolution reconstruction of the calcium-bound state) but also a metastable state that corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are on the order of [Formula: see text]. We expect our tool for extracting free-energy profiles from cryo-EM images to enable more complete characterization of the thermodynamic ensemble of biomolecules.
Collapse
Affiliation(s)
- Julian Giraldo-Barreto
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Magnetism and Simulation Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Sebastian Ortiz
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Erik H Thiede
- Center for Computational Mathematics, Flatiron Institute, New York City, USA
| | - Karen Palacio-Rodriguez
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Bob Carpenter
- Center for Computational Mathematics, Flatiron Institute, New York City, USA
| | - Alex H Barnett
- Center for Computational Mathematics, Flatiron Institute, New York City, USA
| | - Pilar Cossio
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Palermo G, Sugita Y, Wriggers W, Amaro RE. Faces of Contemporary CryoEM Information and Modeling. J Chem Inf Model 2021; 60:2407-2409. [PMID: 32452204 DOI: 10.1021/acs.jcim.0c00481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, California 92521, United States
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California 92093-0340, United States
| |
Collapse
|