1
|
Konc J, Janežič D. Protein binding sites for drug design. Biophys Rev 2022; 14:1413-1421. [PMID: 36532870 PMCID: PMC9734416 DOI: 10.1007/s12551-022-01028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Drug development is a lengthy and challenging process that can be accelerated at early stages by new mathematical approaches and modern computers. To address this important issue, we are developing new mathematical solutions for the detection and characterization of protein binding sites that are important for new drug development. In this review, we present algorithms based on graph theory combined with molecular dynamics simulations that we have developed for studying biological target proteins to provide important data for optimizing the early stages of new drug development. A particular focus is the development of new protein binding site prediction algorithms (ProBiS) and new web tools for modeling pharmaceutically interesting molecules-ProBiS Tools (algorithm, database, web server), which have evolved into a full-fledged graphical tool for studying proteins in the proteome. ProBiS differs from other structural algorithms in that it can align proteins with different folds without prior knowledge of the binding sites. It allows detection of similar binding sites and can predict molecular ligands of various types of pharmaceutical interest that could be advanced to drugs to treat a disease, based on the entire Protein Data Bank (PDB) and AlphaFold database, including proteins not yet in the PDB. All ProBiS Tools are freely available to the academic community at http://insilab.org and https://probis.nih.gov.
Collapse
Affiliation(s)
- Janez Konc
- Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
2
|
Kralj S, Hodošček M, Podobnik B, Kunej T, Bren U, Janežič D, Konc J. Molecular Dynamics Simulations Reveal Interactions of an IgG1 Antibody With Selected Fc Receptors. Front Chem 2021; 9:705931. [PMID: 34277572 PMCID: PMC8283507 DOI: 10.3389/fchem.2021.705931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
In a survey of novel interactions between an IgG1 antibody and different Fcγ receptors (FcγR), molecular dynamics simulations were performed of interactions of monoclonal antibody involved complexes with FcγRs. Free energy simulations were also performed of isolated wild-type and substituted Fc regions bound to FcγRs with the aim of assessing their relative binding affinities. Two different free energy calculation methods, Molecular Mechanical/Generalized Born Molecular Volume (MM/GBMV) and Bennett Acceptance Ratio (BAR), were used to evaluate the known effector substitution G236A that is known to selectively increase antibody dependent cellular phagocytosis. The obtained results for the MM/GBMV binding affinity between different FcγRs are in good agreement with previous experiments, and those obtained using the BAR method for the complete antibody and the Fc-FcγR simulations show increased affinity across all FcγRs when binding to the substituted antibody. The FcγRIIa, a key determinant of antibody agonistic efficacy, shows a 10-fold increase in binding affinity, which is also consistent with the published experimental results. Novel interactions between the Fab region of the antibody and the FcγRs were discovered with this in silico approach, and provide insights into the antibody-FcγR binding mechanism and show promise for future improvements of therapeutic antibodies for preclinical studies of biological drugs.
Collapse
Affiliation(s)
- Sebastjan Kralj
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia.,Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Milan Hodošček
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Barbara Podobnik
- Biologics Technical Development Mengeš, Technical Research and Development Novartis, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Janez Konc
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia.,Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
3
|
Armacost KA, Riniker S, Cournia Z. Exploring Novel Directions in Free Energy Calculations. J Chem Inf Model 2020; 60:5283-5286. [PMID: 33222441 DOI: 10.1021/acs.jcim.0c01266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kira A Armacost
- Computational and Structural Chemistry, MRL, Merck & Co., Inc. West Point, Pennsylvania 19486, United States
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece
| |
Collapse
|