1
|
Constantin L, Fabiano E, Della Sala F. Nonempirical Adiabatic Connection Correlation Functional from Hartree-Fock Orbitals. J Phys Chem Lett 2025; 16:3378-3388. [PMID: 40139195 PMCID: PMC11973921 DOI: 10.1021/acs.jpclett.4c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
We present a nonempirical strategy to construct a correlation functional rooted in the Møller-Plesset (MP) adiabatic connection (AC) formalism for the strong-interaction regime, which satisfies both the weak- and strong-interaction limits and describes accurately the uniform electron gas (UEG) model. The functional is based on Hartree-Fock (HF) orbitals and employs only the UEG and helium atom as model systems; thus, it can be considered a nonempirical and nonlinear generalization of post-HF approaches based on the second-order perturbation theory (MP2) correlation. The functional describes the correlation of atoms with 1 mHa/electron accuracy, and it is also accurate for jellium surface energies. Accurate tests using a nearly complete basis set on diverse systems and properties (atomization/interaction energies, dispersion forces, and ionization potentials) have shown an excellent performance of the functional that corrects the MP2 overbinding without error cancellation. The present investigation can open the way for the development of a new generation of post-HF functionals based on nonlinear MP2 contributions and strong-correlation ingredients.
Collapse
Affiliation(s)
- Lucian
A. Constantin
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, LE, Italy
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, LE, Italy
| |
Collapse
|
2
|
Singh A, Fabiano E, Śmiga S. Understanding the Core Limitations of Second-Order Correlation-Based Functionals Through: Functional, Orbital, and Eigenvalue-Driven Analysis. J Chem Theory Comput 2025; 21:2894-2908. [PMID: 40053414 PMCID: PMC11948335 DOI: 10.1021/acs.jctc.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Density functional theory has long struggled to obtain the exact exchange-correlational functional. Numerous approximations have been designed in the hope of achieving chemical accuracy. However, designing a functional involves numerous methodologies, which have a greater possibility for error accumulation if the functionals are poorly formulated. This study aims to investigate the performance and limitations of second-order correlation functionals within the framework of density functional theory. Specifically, we focus on three major classes of density functional approximations that incorporate second-order energy expressions: ab initio (primarily Görling-Levy) functionals, adiabatic connection models, and double-hybrid functionals. The principal objectives of this research are to evaluate the accuracy of second-order correlation functionals, to understand how the choice of reference orbitals and eigenvalues affects the performance of these functionals, to identify the intrinsic limitations of second-order energy expressions, especially when using arbitrary orbitals or noncanonical configurations, and to propose strategies for improving their accuracy. By addressing these questions, we aim to provide deeper insights into the factors governing the accuracy of second-order correlation functionals, thereby guiding future functional development.
Collapse
Affiliation(s)
- Aditi Singh
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Toruń 87-100, Poland
| | - Eduardo Fabiano
- Istituto
Nanoscienze-CNR, Via
per Arnesano 16, Lecce I-73100, Italy
- Center
for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, Arnesano (LE) 73010, Italy
| | - Szymon Śmiga
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Toruń 87-100, Poland
| |
Collapse
|
3
|
Daas KJ, Kooi DP, Peters NC, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Regularized and Opposite Spin-Scaled Functionals from Møller-Plesset Adiabatic Connection─Higher Accuracy at Lower Cost. J Phys Chem Lett 2023; 14:8448-8459. [PMID: 37721318 DOI: 10.1021/acs.jpclett.3c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Noncovalent interactions (NCIs) play a crucial role in biology, chemistry, material science, and everything in between. To improve pure quantum-chemical simulations of NCIs, we propose a methodology for constructing approximate correlation energies by combining an interpolation along the Møller-Plesset adiabatic connection (MP AC) with a regularization and spin-scaling strategy applied to MP2 correlation energies. This combination yields cosκos-SPL2, which exhibits superior accuracy for NCIs compared to any of the individual strategies. With the N4 formal scaling, cosκos-SPL2 is competitive or often outperforms more expensive dispersion-corrected double hybrids for NCIs. The accuracy of cosκos-SPL2 particularly shines for anionic halogen bonded complexes, where it surpasses standard dispersion-corrected DFT by a factor of 3 to 5.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Nina C Peters
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Giarrusso S, Pribram-Jones A. Møller-Plesset and Density-Fixed Adiabatic Connections for a Model Diatomic System at Different Correlation Regimes. J Chem Theory Comput 2023; 19:5835-5850. [PMID: 37642270 DOI: 10.1021/acs.jctc.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In recent years, adiabatic connection (AC) interpolations developed within density functional theory (DFT) have been found to provide good performances in the calculation of interaction energies when used with Hartree-Fock (HF) ingredients. The physical and mathematical reasons for such unanticipated performance have been clarified, to some extent, by studying the strong-interaction limit of the Møller-Plesset (MP) AC. In this work, we calculate both the MP and the DFT AC integrand for the asymmetric Hubbard dimer, which allows for a systematic investigation of different correlation regimes by varying two simple parameters in the Hamiltonian: the external potential, Δv, and the interaction strength, U. Notably, we find that, while the DFT AC integrand appears to be convex in the full parameter space, the MP integrand may change curvature twice. Furthermore, we discuss different aspects of the second-order expansion of the correlation energy in each AC, and we demonstrate why the derivative of the λ-dependent density in the MP AC at λ = 0 (i.e., at the HF density) is zero in the model. Concerning the strong-interaction limit of both ACs in the Hubbard dimer setting, we show that the asymptotic value of the MP AC, W∞HF, is lower than (or equal to) its DFT analogue, W∞KS, if the two are compared at a given density, just like in real space. However, we also show that this is not always the case if the two quantities are compared at a given external potential.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| |
Collapse
|
5
|
Matoušek M, Hapka M, Veis L, Pernal K. Toward more accurate adiabatic connection approach for multireference wavefunctions. J Chem Phys 2023; 158:054105. [PMID: 36754817 DOI: 10.1063/5.0131448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A multiconfigurational adiabatic connection (AC) formalism is an attractive approach to compute the dynamic correlation within the complete active space self-consistent field and density matrix renormalization group (DMRG) models. Practical realizations of AC have been based on two approximations: (i) fixing one- and two-electron reduced density matrices (1- and 2-RDMs) at the zero-coupling constant limit and (ii) extended random phase approximation (ERPA). This work investigates the effect of removing the "fixed-RDM" approximation in AC. The analysis is carried out for two electronic Hamiltonian partitionings: the group product function- and the Dyall Hamiltonians. Exact reference AC integrands are generated from the DMRG full configuration interaction solver. Two AC models are investigated, employing either exact 1- and 2-RDMs or their second-order expansions in the coupling constant in the ERPA equations. Calculations for model molecules indicate that lifting the fixed-RDM approximation is a viable way toward improving the accuracy of existing AC approximations.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
6
|
Förster A. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies. J Chem Theory Comput 2022; 18:5948-5965. [PMID: 36150190 PMCID: PMC9558381 DOI: 10.1021/acs.jctc.2c00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
With increasing interelectronic distance, the screening
of the
electron–electron interaction by the presence of other electrons
becomes the dominant source of electron correlation. This effect is
described by the random phase approximation (RPA) which is therefore
a promising method for the calculation of weak interactions. The success
of the RPA relies on the cancellation of errors, which can be traced
back to the violation of the crossing symmetry of the 4-point vertex,
leading to strongly overestimated total correlation energies. By the
addition of second-order screened exchange (SOSEX) to the correlation
energy, this issue is substantially reduced. In the adiabatic connection
(AC) SOSEX formalism, one of the two electron–electron interaction
lines in the second-order exchange term is dynamically screened (SOSEX(W, vc)). A
related SOSEX expression in which both electron–electron interaction
lines are statically screened (SOSEX(W(0), W(0))) is obtained from the G3W2 contribution to the electronic self-energy. In contrast to SOSEX(W, vc), the
evaluation of this correlation energy expression does not require
an expensive numerical frequency integration and is therefore advantageous
from a computational perspective. We compare the accuracy of the statically
screened variant to RPA and RPA+SOSEX(W, vc) for a wide range of chemical
reactions. While both methods fail for barrier heights, SOSEX(W(0), W(0)) agrees very well with SOSEX(W, vc) for
charged excitations and noncovalent interactions where they lead to
major improvements over RPA.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Song S, Vuckovic S, Sim E, Burke K. Density-Corrected DFT Explained: Questions and Answers. J Chem Theory Comput 2022; 18:817-827. [DOI: 10.1021/acs.jctc.1c01045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Stefan Vuckovic
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce, 73100, Italy
- Department of Chemistry&Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
8
|
Shee J, Loipersberger M, Rettig A, Lee J, Head-Gordon M. Regularized Second-Order Møller-Plesset Theory: A More Accurate Alternative to Conventional MP2 for Noncovalent Interactions and Transition Metal Thermochemistry for the Same Computational Cost. J Phys Chem Lett 2021; 12:12084-12097. [PMID: 34910484 PMCID: PMC10037552 DOI: 10.1021/acs.jpclett.1c03468] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Second-order Møller-Plesset theory (MP2) notoriously breaks down for π-driven dispersion interactions and dative bonds in transition metal complexes. Herein, we investigate three physically justified forms of single-parameter, energy-gap dependent regularization which can yield high and transferable accuracy for a variety of noncovalent interactions (including S22, S66, and L7 test sets) and (mostly closed shell) transition metal thermochemistry. Regularization serves to damp overestimated pairwise additive contributions, renormalizing first-order amplitudes such that the effects of higher-order correlations are incorporated. The optimal parameter values for the noncovalent and transition metal sets are 1.1, 0.7, and 0.4 for κ, σ, and σ2 regularizers, respectively. However, such regularization slightly degrades the accuracy of conventional MP2 for some small-molecule test sets, most of which have relatively large average frontier energy gaps. Our results suggest that appropriately regularized MP2 models may improve double hybrid density functionals, at no additional cost over conventional MP2.
Collapse
Affiliation(s)
- James Shee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Adam Rettig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Daas T, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Noncovalent Interactions from Models for the Møller-Plesset Adiabatic Connection. J Phys Chem Lett 2021; 12:4867-4875. [PMID: 34003655 PMCID: PMC8280728 DOI: 10.1021/acs.jpclett.1c01157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 05/08/2023]
Abstract
Given the omnipresence of noncovalent interactions (NCIs), their accurate simulations are of crucial importance across various scientific disciplines. Here we construct accurate models for the description of NCIs by an interpolation along the Møller-Plesset adiabatic connection (MP AC). Our interpolation approximates the correlation energy, by recovering MP2 at small coupling strengths and the correct large-coupling strength expansion of the MP AC, recently shown to be a functional of the Hartree-Fock density. Our models are size consistent for fragments with nondegenerate ground states, have the same cost as double hybrids, and require no dispersion corrections to capture NCIs accurately. These interpolations greatly reduce large MP2 errors for typical π-stacking complexes (e.g., benzene-pyridine dimers) and for the L7 data set. They are also competitive with state-of-the-art dispersion enhanced functionals and can even significantly outperform them for a variety of data sets, such as CT7 and L7.
Collapse
Affiliation(s)
- Timothy
J. Daas
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Paola Gori-Giorgi
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Physical
and Theoretical Chemistry, University of
Saarland, 66123 Saarbrücken, Germany
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
10
|
Abstract
Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme's D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.
Collapse
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Stefan Vuckovic
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
11
|
Daas TJ, Grossi J, Vuckovic S, Musslimani ZH, Kooi DP, Seidl M, Giesbertz KJH, Gori-Giorgi P. Large coupling-strength expansion of the Møller–Plesset adiabatic connection: From paradigmatic cases to variational expressions for the leading terms. J Chem Phys 2020; 153:214112. [DOI: 10.1063/5.0029084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy J. Daas
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Juri Grossi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ziad H. Musslimani
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P. Kooi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Klaas J. H. Giesbertz
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|