1
|
Werner HJ, Hansen A. Local Wave Function Embedding: Correlation Regions in PNO-LCCSD(T)-F12 Calculations. J Phys Chem A 2024; 128:10936-10947. [PMID: 39637318 DOI: 10.1021/acs.jpca.4c06852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Many chemical reactions affect only a rather small number of bonds, leaving the largest part of the chemical and geometrical structure of the molecules nearly unchanged. In this work we extended the previously proposed region method [J. Chem. Phys. 128, 144106 (2008)] to PNO-LCCSD(T)-F12. Using this method, we investigate whether accurate reaction energies for larger systems can be obtained by correlating only the electrons in a region of localized molecular orbitals close to the reaction center at high-level (PNO-LCCSD(T)-F12). The remainder is either treated at lower level (PNO-LMP2-F12) or left uncorrelated (Hartree-Fock frozen core). It is demonstrated that indeed the computed reaction energies converge rather quickly with the size of the correlation regions toward the results of the full calculations. Typically, 2-3 bonds from the reacting atoms need to be included to reproduce the results of the full calculations to within ±0.2 kcal/mol. We also computed spin-state energy differences in a large transition metal complex, where a factor of 15 in computation time could be saved, still yielding a result that is within ±0.1 kcal/mol of the one obtained in a full PNO-LCCSD(T)-F12 calculation.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
2
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
3
|
Gray M, Herbert JM. Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes. J Chem Phys 2024; 161:054114. [PMID: 39105555 PMCID: PMC11305816 DOI: 10.1063/5.0206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
The titular domain-based local pair natural orbital (DLPNO) approximation is the most widely used method for extending correlated wave function models to large molecular systems, yet its fidelity for intermolecular interaction energies in large supramolecular complexes has not been thoroughly vetted. Non-covalent interactions are sensitive to tails of the electron density and involve nonlocal dispersion that is discarded or approximated if the screening of pair natural orbitals (PNOs) is too aggressive. Meanwhile, the accuracy of the DLPNO approximation is known to deteriorate as molecular size increases. Here, we test the DLPNO approximation at the level of second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] for a variety of large supramolecular complexes. DLPNO-MP2 interaction energies are within 3% of canonical values for small dimers with ≲10 heavy atoms, but for larger systems, the DLPNO approximation is often quite poor unless the results are extrapolated to the canonical limit where the threshold for discarding PNOs is taken to zero. Counterpoise correction proves to be essential in reducing errors with respect to canonical results. For a sequence of nanoscale graphene dimers up to (C96H24)2, extrapolated DLPNO-MP2 interaction energies agree with canonical values to within 1%, independent of system size, provided that the basis set does not contain diffuse functions; these cause the DLPNO approximation to behave erratically, such that results cannot be extrapolated in a meaningful way. DLPNO-CCSD(T) calculations are typically performed using looser PNO thresholds as compared to DLPNO-MP2, but this significantly impacts accuracy for large supramolecular complexes. Standard DLPNO-CCSD(T) settings afford errors of 2-6 kcal/mol for dimers involving coronene (C24H12) and circumcoronene (C54H18), even at the DLPNO-CCSD(T1) level.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Rahrt R, Hein-Janke B, Amarasinghe KN, Shafique M, Feldt M, Guo L, Harvey JN, Pollice R, Koszinowski K, Mata RA. The Fe-MAN Challenge: Ferrates-Microkinetic Assessment of Numerical Quantum Chemistry. J Phys Chem A 2024; 128:4663-4673. [PMID: 38832568 PMCID: PMC11182345 DOI: 10.1021/acs.jpca.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Organometallic species, such as organoferrate ions, are prototypical nucleophiles prone to reacting with a wide range of electrophiles, including proton donors. In solution, the operation of dynamic equilibria and the simultaneous presence of several organometallic species severely complicate the analysis of these fundamentally important reactions. This can be overcome by gas-phase experiments on mass-selected ions, which allow for the determination of the microscopic reactivity of the target species. In this contribution, we focus on the reactivity of a series of trisarylferrate complexes toward 2,2,2-trifluoroethanol and 2,2-difluoroethanol. By means of mass-spectrometric measurements, we determined the experimental bimolecular rate constants kexp of the gas-phase protolysis reactions of the trisarylferrate anions FePh3- and FeMes3- with the aforementioned acids. Based on these experiments, we carried out a dual blind challenge, inviting theoretical groups to submit their best predictions for the activation barriers and/or theoretical rate constants ktheo. This provides a unique opportunity to evaluate different computational protocols under minimal bias and sets the stage for further benchmarking of quantum chemical methods and data-driven approaches in the future.
Collapse
Affiliation(s)
- Rene Rahrt
- Institut
für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, Göttingen 37077, Germany
| | - Björn Hein-Janke
- Institut
für Physikalische Chemie, Universität
Göttingen, Tammannstr.
6, Göttingen 37077, Germany
| | - Kosala N. Amarasinghe
- Leibniz
Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Muhammad Shafique
- Leibniz
Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Milica Feldt
- Leibniz
Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Luxuan Guo
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Jeremy N. Harvey
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Robert Pollice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The
Netherlands
| | - Konrad Koszinowski
- Institut
für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, Göttingen 37077, Germany
| | - Ricardo A. Mata
- Institut
für Physikalische Chemie, Universität
Göttingen, Tammannstr.
6, Göttingen 37077, Germany
| |
Collapse
|
5
|
Gasevic T, Bursch M, Ma Q, Grimme S, Werner HJ, Hansen A. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Phys Chem Chem Phys 2024; 26:13884-13908. [PMID: 38661329 DOI: 10.1039/d3cp06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The elements of the p-block of the periodic table are of high interest in various chemical and technical applications like frustrated Lewis-pairs (FLP) or opto-electronics. However, high-quality benchmark data to assess approximate density functional theory (DFT) for their theoretical description are sparse. In this work, we present a benchmark set of 604 dimerization energies of 302 "inorganic benzenes" composed of all non-carbon p-block elements of main groups III to VI up to polonium. This so-called IHD302 test set comprises two classes of structures formed by covalent bonding and by weaker donor-acceptor (WDA) interactions, respectively. Generating reliable reference data with ab initio methods is challenging due to large electron correlation contributions, core-valence correlation effects, and especially the slow basis set convergence. To compute reference values for these dimerization reactions, after thorough testing, we applied a computational protocol using state-of-the-art explicitly correlated local coupled cluster theory termed PNO-LCCSD(T)-F12/cc-VTZ-PP-F12(corr.). It includes a basis set correction at the PNO-LMP2-F12/aug-cc-pwCVTZ level. Based on these reference data, we assess 26 DFT methods in combination with three different dispersion corrections and the def2-QZVPP basis set, five composite DFT approaches, and five semi-empirical quantum mechanical methods. For the covalent dimerizations, the r2SCAN-D4 meta-GGA, the r2SCAN0-D4 and ωB97M-V hybrids, and the revDSD-PBEP86-D4 double-hybrid functional are found to be the best-performing methods among the evaluated functionals of the respective class. However, since def2 basis sets for the 4th period are not associated to relativistic pseudo-potentials, we obtained significant errors in the covalent dimerization energies (up to 6 kcal mol-1) for molecules containing p-block elements of the 4th period. Significant improvements were achieved for systems containing 4th row elements by using ECP10MDF pseudopotentials along with re-contracted aug-cc-pVQZ-PP-KS basis sets introduced in this work with the contraction coefficients taken from atomic DFT (PBE0) calculations. Overall, the IHD302 set represents a challenge to contemporary quantum chemical methods. This is due to a large number of spatially close p-element bonds which are underrepresented in other benchmark sets, and the partial covalent bonding character for the WDA interactions. The IHD302 set may be helpful to develop more robust and transferable approximate quantum chemical methods in the future.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Koeln, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Drabik G, Radoń M. Approaching the Complete Basis Set Limit for Spin-State Energetics of Mononuclear First-Row Transition Metal Complexes. J Chem Theory Comput 2024; 20:3199-3217. [PMID: 38574194 PMCID: PMC11044276 DOI: 10.1021/acs.jctc.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Convergence to the complete basis set (CBS) limit is analyzed for the problem of spin-state energetics in mononuclear first-row transition metal (TM) complexes by taking under scrutiny a benchmark set of 18 energy differences between spin states for 13 chemically diverse TM complexes. The performance of conventional CCSD(T) and explicitly correlated CCSD(T)-F12a/b calculations in approaching the CCSD(T)/CBS limits is systematically studied. An economic computational protocol is developed based on the CCSD-F12a approximation and (here proposed) modified scaling of the perturbative triples term (T#). This computational protocol recovers the relative spin-state energetics of the benchmark set in excellent agreement with the reference CCSD(T)/CBS limits (mean absolute deviation of 0.4, mean signed deviation of 0.2, and maximum deviation of 0.8 kcal/mol) and enables performing canonical CCSD(T) calculations for mononuclear TM complexes sized up to ca. 50 atoms, which is illustrated by application to heme-related metalloporphyrins. Furthermore, a good transferability of the basis set incompleteness error (BSIE) is demonstrated for spin-state energetics computed using CCSD(T) and other wave function methods (MP2, CASPT2, CASPT2/CC, NEVPT2, and MRCI + Q), which justifies efficient focal-point approximations and simplifies the construction of multimethod benchmark studies.
Collapse
Affiliation(s)
- Gabriela Drabik
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków Poland
| | - Mariusz Radoń
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków Poland
| |
Collapse
|
7
|
Sorathia K, Frantzov D, Tew DP. Improved CPS and CBS Extrapolation of PNO-CCSD(T) Energies: The MOBH35 and ISOL24 Data Sets. J Chem Theory Comput 2024; 20:2740-2750. [PMID: 38513261 PMCID: PMC11008106 DOI: 10.1021/acs.jctc.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Computation of heats of reaction of large molecules is now feasible using the domain-based pair natural orbital (PNO)-coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] theory. However, to obtain agreement within 1 kcal/mol of experiment, it is necessary to eliminate basis set incompleteness error, which comprises both the AO basis set error and the PNO truncation error. Our investigation into the convergence to the canonical limit of PNO-CCSD(T) energies with the PNO truncation threshold T shows that errors follow the model E ( T ) = E + A T 1 / 2 . Therefore, PNO truncation errors can be eliminated using a simple two-point CPS extrapolation to the canonical limit so that subsequent CBS extrapolation is not limited by the residual PNO truncation error. Using the ISOL24 and MOBH35 data sets, we find that PNO truncation errors are larger for molecules with significant static correlation and that it is necessary to use very tight thresholds of T = 10 - 8 to ensure that errors do not exceed 1 kcal/mol. We present a lower-cost extrapolation scheme that uses information from small basis sets to estimate the PNO truncation errors for larger basis sets. In this way, the canonical limit of CCSD(T) calculations on sizable molecules with large basis sets can be reliably estimated in a practical way. Using this approach, we report near complete basis set (CBS)-CCSD(T) reaction energies for the full ISOL24 and MOBH35 data sets.
Collapse
Affiliation(s)
- Kesha Sorathia
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Damyan Frantzov
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - David P. Tew
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
8
|
Szabó PB, Csóka J, Kállay M, Nagy PR. Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2023; 19:8166-8188. [PMID: 37921429 PMCID: PMC10687875 DOI: 10.1021/acs.jctc.3c00881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The extension of the highly optimized local natural orbital (LNO) coupled cluster (CC) with single-, double-, and perturbative triple excitations [LNO-CCSD(T)] method is presented for high-spin open-shell molecules based on restricted open-shell references. The techniques enabling the outstanding efficiency of the closed-shell LNO-CCSD(T) variant are adopted, including the iteration- and redundancy-free second-order Møller-Plesset and (T) formulations as well as the integral-direct, memory- and disk use-economic, and OpenMP-parallel algorithms. For large molecules, the efficiency of our open-shell LNO-CCSD(T) method approaches that of its closed-shell parent method due to the application of restricted orbital sets for demanding integral transformations and a novel approximation for higher-order long-range spin-polarization effects. The accuracy of open-shell LNO-CCSD(T) is extensively tested for radicals and reactions thereof, ionization processes, as well as spin-state splittings, and transition-metal compounds. At the size range where the canonical CCSD(T) reference is accessible (up to 20-30 atoms), the average open-shell LNO-CCSD(T) correlation energies are found to be 99.9 to 99.95% accurate, which translates into average absolute deviations of a few tenths of kcal/mol in the investigated energy differences already with the default settings. For more extensive molecules, the local errors may grow, but they can be estimated and decreased via affordable systematic convergence studies. This enables the accurate modeling of large systems with complex electronic structures, as illustrated on open-shell organic radicals and transition-metal complexes of up to 179 atoms as well as on challenging biochemical systems, including up to 601 atoms and 11,000 basis functions. While the protein models involve difficulties for local approximations, such as the spin states of a bounded iron ion or an extremely delocalized singly occupied orbital, the corresponding single-node LNO-CCSD(T) computations were feasible in a matter of days with 10s to 100 GB of memory use. Therefore, the new LNO-CCSD(T) implementation enables highly accurate computations for open-shell systems of unprecedented size and complexity with widely accessible hardware.
Collapse
Affiliation(s)
- P. Bernát Szabó
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Csóka
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
9
|
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023; 25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate prediction of energy differences between alternative spin states of transition metal complexes is essential in computational (bio)inorganic chemistry-for example, in characterization of spin crossover materials and in the theoretical modeling of open-shell reaction mechanisms-but it remains one of the most compelling problems for quantum chemistry methods. A part of this challenge is to obtain reliable reference data for benchmark studies, as even the highest-level applicable methods are known to give divergent results. This Perspective discusses two possible approaches to method benchmarking for spin-state energetics: using either theoretically computed or experiment-derived reference data. With the focus on the latter approach, an extensive general review is provided for the available experimental data of spin-state energetics and their interpretations in the context of benchmark studies, targeting the possibility of back-correcting the vibrational effects and the influence of solvents or crystalline environments. With a growing amount of experience, these effects can be now not only qualitatively understood, but also quantitatively modeled, providing the way to derive nearly chemically accurate estimates of the electronic spin-state gaps to be used as benchmarks and advancing our understanding of the phenomena related to spin states in condensed phases.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Krakow, Poland.
| |
Collapse
|
10
|
Murakami T, Matsumoto N, Fujihara T, Takayanagi T. Possible Roles of Transition Metal Cations in the Formation of Interstellar Benzene via Catalytic Acetylene Cyclotrimerization. Molecules 2023; 28:7454. [PMID: 37959873 PMCID: PMC10649463 DOI: 10.3390/molecules28217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous interstellar molecules. However, the formation mechanisms of PAHs and even the simplest cyclic aromatic hydrocarbon, benzene, are not yet fully understood. Recently, we reported the statistical and dynamical properties in the reaction mechanism of Fe+-catalyzed acetylene cyclotrimerization, whereby three acetylene molecules are directly converted to benzene. In this study, we extended our previous work and explored the possible role of the complex of other 3d transition metal cations, TM+ (TM = Sc, Ti, Mn, Co, and Ni), as a catalyst in acetylene cyclotrimerization. Potential energy profiles for bare TM+-catalyst (TM = Sc and Ti), for TM+NC--catalyst (TM = Sc, Ti, Mn, Co, and Ni), and for TM+-(H2O)8-catalyst (TM = Sc and Ti) systems were obtained using quantum chemistry calculations, including the density functional theory levels. The calculation results show that the scandium and titanium cations act as efficient catalysts in acetylene cyclotrimerization and that reactants, which contain an isolated acetylene and (C2H2)2 bound to a bare (ligated) TM cation (TM = Sc and Ti), can be converted into a benzene-metal-cation product complex without an entrance barrier. We found that the number of electrons in the 3d orbitals of the transition metal cation significantly contributes to the catalytic efficiency in the acetylene cyclotrimerization process. On-the-fly Born-Oppenheimer molecular dynamics (BOMD) simulations of the Ti+-NC- and Ti+-(H2O)8 complexes were also performed to comprehensively understand the nuclear dynamics of the reactions. The computational results suggest that interstellar benzene can be produced via acetylene cyclotrimerization reactions catalyzed by transition metal cation complexes.
Collapse
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Naoki Matsumoto
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
| | - Takashi Fujihara
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
- Comprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City 338-8570, Japan; (N.M.); (T.F.)
| |
Collapse
|
11
|
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023; 19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An overview of the approximations in the explicitly correlated local coupled cluster methods PNO-LCCSD(T)-F12 in Molpro and DLPNO-CCSD(T)F12 in ORCA is given. Options to select the domains of projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and triples natural orbitals (TNOs) in both programs are described and compared in detail. The two programs are applied to compute isomerization and conformational energies of the ISOL24 and ACONFL test sets, where the former is part of the GMTKN55 benchmark suite. Thorough studies of basis set effects are presented for selected systems. These revealed large intramolecular basis set superposition effects that make it practically impossible to reliably determine the complete basis set (CBS) limits without including explicitly correlated terms. The latter strongly reduce the basis set dependence and at the same time also errors caused by the local domain approximations. On the basis of these studies, the PNO-LCCSD(T)-F12 method is applied to determine new reference energies for the above-mentioned benchmark sets. We are confident that our results should agree within a few tenths of a kcal mol-1 with the (unknown) CCSD(T)/CBS values, which therefore allowed us to define computational settings for accurate explicitly correlated local coupled cluster methods with moderate computational effort. With these protocols, especially PNO-LCCSD(T)-F12b/AVTZ', reliable reference values for comprehensive benchmark sets can be generated efficiently. This can significantly advance the development and evaluation of the performance of approximate electronic structure methods, especially improved density functional approximations or machine learning approaches.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Craciunescu L, Liane EM, Kirrander A, Paterson MJ. Excited-state van der Waals potential energy surfaces for the NO A2Σ+ + CO2X1Σg+ collision complex. J Chem Phys 2023; 159:124303. [PMID: 38127380 DOI: 10.1063/5.0165769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 12/23/2023] Open
Abstract
Excited state van der Waals (vdW) potential energy surfaces (PESs) of the NO A2Σ+ + CO2X1Σg+ system are thoroughly investigated using coupled cluster theory and complete active space perturbation theory to second order (CASPT2). First, it is shown that pair natural orbital coupled cluster singles and doubles with perturbative triples yields comparable accuracy compared to CCSD(T) for molecular properties and vdW-minima at a fraction of computational cost of the latter. Using this method in conjunction with highly diffuse basis sets and counterpoise correction for basis set superposition error, the PESs for different intermolecular orientations are investigated. These show numerous vdW-wells, interconnected for all geometries except one, with a maximum depth of up to 830 cm-1; considerably deeper than those on the ground state surface. Multi-reference effects are investigated with CASPT2 calculations. The long-range vdW-surfaces support recent experimental observations relating to rotational energy transfer due the anisotropy in the potentials.
Collapse
Affiliation(s)
- Luca Craciunescu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Eirik M Liane
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| |
Collapse
|
13
|
Raghavachari K, Maier S, Collins EM, Debnath S, Sengupta A. Approaching Coupled Cluster Accuracy with Density Functional Theory Using the Generalized Connectivity-Based Hierarchy. J Chem Theory Comput 2023. [PMID: 37338997 DOI: 10.1021/acs.jctc.3c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
This Perspective reviews connectivity-based hierarchy (CBH), a systematic hierarchy of error-cancellation schemes developed in our group with the goal of achieving chemical accuracy using inexpensive computational techniques ("coupled cluster accuracy with DFT"). The hierarchy is a generalization of Pople's isodesmic bond separation scheme that is based only on the structure and connectivity and is applicable to any organic and biomolecule consisting of covalent bonds. It is formulated as a series of rungs involving increasing levels of error cancellation on progressively larger fragments of the parent molecule. The method and our implementation are discussed briefly. Examples are given for the applications of CBH involving (1) energies of complex organic rearrangement reactions, (2) bond energies of biofuel molecules, (3) redox potentials in solution, (4) pKa predictions in the aqueous medium, and (5) theoretical thermochemistry combining CBH with machine learning. They clearly show that near-chemical accuracy (1-2 kcal/mol) is achieved for a variety of applications with DFT methods irrespective of the underlying density functional used. They demonstrate conclusively that seemingly disparate results, often seen with different density functionals in many chemical applications, are due to an accumulation of systematic errors in the smaller local molecular fragments that can be easily corrected with higher-level calculations on those small units. This enables the method to achieve the accuracy of the high level of theory (e.g., coupled cluster) while the cost remains that of DFT. The advantages and limitations of the method are discussed along with areas of ongoing developments.
Collapse
Affiliation(s)
- Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah Maier
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric M Collins
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sibali Debnath
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arkajyoti Sengupta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Corrêa RLGQ, de Moraes MMF, de Oliveira KT, Aoto YA, Coutinho-Neto MD, Homem-de-Mello P. Diving into the optoelectronic properties of Cu(II) and Zn(II) curcumin complexes: a DFT and wavefunction benchmark. J Mol Model 2023; 29:166. [PMID: 37118617 DOI: 10.1007/s00894-023-05560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
CONTEXT Curcumin is a popular food additive around the world whose medicinal properties have been known since ancient times. The literature has recently highlighted several biological properties, but besides the health-related usages, its natural yellowish color may also be helpful for light-harvesting applications. This research aims to close a knowledge gap regarding the photophysical description of curcumin and its metallic complexes. METHODS We conducted benchmark experiments comparing NEVPT calculations with several DFT functionals (B3LYP, M06-L, M06-2X, CAM-B3LYP, and ωB97X-D) for describing the UV spectra of curcumin and its metallo-derivative, curcumin-copper(II). Once we determined the most suitable functional, we performed tests with different basis sets and conditions, such as solvation and redox state, to identify their impact on excited state properties. These results are also reported for the curcumin-zinc(II) derivative. We found that the accuracy of DFT functionals depends strongly on the nature of curcumin's excitations. Intra-ligand transitions dominate the absorption spectra of the complexes. Curcumin absorption is marginally affected by solvation and chelation, but when combined with redox processes, they may result in significant modifications. This is because copper cation changes its coordination geometry in response to redox conditions, changing the spectrum. We found that, compared to a NEVPT reference, B3LYP is the best functional for a general description of the compounds, despite not being appropriate for charge transfer transitions. M06-L was the best for LMCT transitions. However, compared with NEVPT2 and PNO-LCCSD(T)-F12 results, no functional achieved acceptable accuracy for MLCT transitions.
Collapse
Affiliation(s)
| | | | | | - Yuri Alexandre Aoto
- Center for Mathematics, Computation and Cognition (CMCC), Federal University of ABC (UFABC), Santo André, 09210-580, Brazil
| | | | - Paula Homem-de-Mello
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580, Brazil.
| |
Collapse
|
15
|
Saitow M, Uemura K, Yanai T. A local pair-natural orbital-based complete-active space perturbation theory using orthogonal localized virtual molecular orbitals. J Chem Phys 2022; 157:084101. [DOI: 10.1063/5.0094777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The multireference second-order perturbation theory (CASPT2) is known to deliver a quantitative description of various complex electronic states. Despite its near-size-consistent nature, the applicability of the CASPT2 method to large, real-life systems is mostly hindered by large computational and storage costs for the two-external tensors, such as two-electron integrals, amplitudes, and residuum. To this end, Menezes and co-workers developed a reduced-scaling CASPT2 scheme by incorporating the local pair-natural orbital (PNO) representation of the many-body wave functions using non-orthonormal projected atomic orbitals (PAOs) into the CASPT theory [F. Menezes et al., J. Chem. Phys. 145, 124115 (2016)]. Alternatively, in this paper, we develop a new PNO-based CASPT2 scheme using the orthonormal localized virtual molecular orbitals (LVMOs) and assess its performance and accuracy in comparison with the conventional PAO-based counterpart. Albeit the compactness, the LVMOs were considered to perform somewhat poorly compared to PAOs in the local correlation framework because they caused enormously large orbital domains. In this work, we show that the size of LVMO domains can be rendered comparable to or even smaller than that of PAOs by the use of the differential overlap integrals for domain construction. Optimality of the MOs from the CASSCF treatment is a key to reducing the LVMO domain size for the multireference case. Due to the augmented Hessian-based localization algorithm, an additional computational cost for obtaining the LVMOs is relatively minor. We demonstrate that the LVMO-based PNO-CASPT2 method is routinely applicable to large, real-life molecules such as Menshutkin SN2 reaction in a single-walled carbon nanotube reaction field.
Collapse
Affiliation(s)
- Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Kazuma Uemura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
16
|
D'Cunha R, Crawford TD. Applications of a perturbation-aware local correlation method to coupled cluster linear response properties. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ruhee D'Cunha
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - T. Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
- Molecular Sciences Software Institute, Blacksburg, VA, USA
| |
Collapse
|
17
|
Kreplin DA, Werner HJ. A combined first- and second-order optimization method for improving convergence of Hartree–Fock and Kohn–Sham calculations. J Chem Phys 2022; 156:214111. [DOI: 10.1063/5.0094292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigate the optimization of Hartree–Fock (HF) orbitals with our recently proposed combined first- and second-order (SO-SCI) method, which was originally developed for multi-configuration self-consistent field (MCSCF) and complete active space SCF (CASSCF) calculations. In MCSCF/CASSCF, it unites a second-order optimization of the active orbitals with a Fock-based first-order treatment of the remaining closed-virtual orbital rotations. In the case of the single-determinant wavefunctions, the active space is replaced by a preselected “second-order domain,” and all rotations involving orbitals in this subspace are treated at second-order. The method has been implemented for spin-restricted and spin-unrestricted Hartree–Fock (RHF, UHF), configuration-averaged Hartree–Fock (CAHF), as well as Kohn–Sham (KS) density functional theory (RKS, UKS). For each of these cases, various choices of the second-order domain have been tested, and appropriate defaults are proposed. The performance of the method is demonstrated for several transition metal complexes. It is shown that the SO-SCI optimization provides faster and more robust convergence than the standard SCF procedure but requires, in many cases, even less computation time. In difficult cases, the SO-SCI method not only speeds up convergence but also avoids convergence to saddle-points. Furthermore, it helps to find spin-symmetry broken solutions in the cases of UHF or UKS. In the case of CAHF, convergence can also be significantly improved as compared to a previous SCF implementation. This is particularly important for multi-center cases with two or more equal heavy atoms. The performance is demonstrated for various two-center complexes with different lanthanide atoms.
Collapse
Affiliation(s)
- David A. Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
19
|
Barone V, Alessandrini S, Biczysko M, Cheeseman JR, Clary DC, McCoy AB, DiRisio RJ, Neese F, Melosso M, Puzzarini C. Computational molecular spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00034-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Szabó PB, Csóka J, Kállay M, Nagy PR. Linear-Scaling Open-Shell MP2 Approach: Algorithm, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2021; 17:2886-2905. [PMID: 33819030 PMCID: PMC8154337 DOI: 10.1021/acs.jctc.1c00093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A linear-scaling
local second-order Møller–Plesset
(MP2) method is presented for high-spin open-shell molecules based
on restricted open-shell (RO) reference functions. The open-shell
local MP2 (LMP2) approach inherits the iteration- and redundancy-free
formulation and the completely integral-direct, OpenMP-parallel, and
memory and disk use economic algorithms of our closed-shell LMP2 implementation.
By utilizing restricted local molecular orbitals for the demanding
integral transformation step and by introducing a novel long-range
spin-polarization approximation, the computational cost of RO-LMP2
approaches that of closed-shell LMP2. Extensive benchmarks were performed
for reactions of radicals, ionization potentials, as well as spin-state
splittings of carbenes and transition-metal complexes. Compared to
the conventional MP2 reference for systems of up to 175 atoms, local
errors of at most 0.1 kcal/mol were found, which are well below the
intrinsic accuracy of MP2. RO-LMP2 computations are presented for
challenging protein models of up to 601 atoms and 11 000 basis
functions, which involve either spin states of a complexed iron ion
or a highly delocalized singly occupied orbital. The corresponding
runtimes of 9–15 h obtained with a single, many-core CPU demonstrate
that MP2, as well as spin-scaled MP2 and double-hybrid density functional
methods, become widely accessible for open-shell systems of unprecedented
size and complexity.
Collapse
Affiliation(s)
- P Bernát Szabó
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - József Csóka
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
21
|
Gyevi-Nagy L, Kállay M, Nagy PR. Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2021; 17:860-878. [PMID: 33400527 PMCID: PMC7884001 DOI: 10.1021/acs.jctc.0c01077] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/28/2022]
Abstract
The accurate and systematically improvable frozen natural orbital (FNO) and natural auxiliary function (NAF) cost-reducing approaches are combined with our recent coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] implementations. Both of the closed- and open-shell FNO-CCSD(T) codes benefit from OpenMP parallelism, completely or partially integral-direct density-fitting algorithms, checkpointing, and hand-optimized, memory- and operation count effective implementations exploiting all permutational symmetries. The closed-shell CCSD(T) code requires negligible disk I/O and network bandwidth, is MPI/OpenMP parallel, and exhibits outstanding peak performance utilization of 50-70% up to hundreds of cores. Conservative FNO and NAF truncation thresholds benchmarked for challenging reaction, atomization, and ionization energies of both closed- and open-shell species are shown to maintain 1 kJ/mol accuracy against canonical CCSD(T) for systems of 31-43 atoms even with large basis sets. The cost reduction of up to an order of magnitude achieved extends the reach of FNO-CCSD(T) to systems of 50-75 atoms (up to 2124 atomic orbitals) with triple- and quadruple-ζ basis sets, which is unprecedented without local approximations. Consequently, a considerably larger portion of the chemical compound space can now be covered by the practically "gold standard" quality FNO-CCSD(T) method using affordable resources and about a week of wall time. Large-scale applications are presented for organocatalytic and transition-metal reactions as well as noncovalent interactions. Possible applications for benchmarking local CCSD(T) methods, as well as for the accuracy assessment or parametrization of less complete models, for example, density functional approximations or machine learning potentials, are also outlined.
Collapse
Affiliation(s)
- László Gyevi-Nagy
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter R. Nagy
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
22
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. J Chem Theory Comput 2021; 17:902-926. [PMID: 33405921 DOI: 10.1021/acs.jctc.0c01129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present explicitly correlated open-shell pair natural orbital local coupled-cluster methods, PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. The methods are extensions of our previously reported PNO-R/UCCSD methods (J. Chem. Theory Comput., 2020, 16, 3135-3151, https://pubs.acs.org/doi/10.1021/acs.jctc.0c00192) with additions of explicit correlation and perturbative triples corrections. The explicit correlation treatment follows the spin-orbital CCSD-F12b theory using Ansatz 3*A, which is found to yield comparable or better basis set convergence than the more rigorous Ansatz 3C in computed ionization potentials and reaction energies using double- to quaduple-ζ basis sets. The perturbative triples correction is adapted from the spin-orbital (T) theory to use triples natural orbitals (TNOs). To address the coupling due to off-diagonal Fock matrix elements, the local triples amplitudes are iteratively solved using small domains of TNOs, and a semicanonical (T0) domain correction with larger domains is applied to reduce the domain errors. The performance of the methods is demonstrated through benchmark calculations on ionization potentials, radical stabilization energies, reaction energies of fragmentations and rearrangements in radical cations, and spin-state energy differences of iron complexes. For a few test sets where canonical calculations are feasible, PNO-RCCSD(T)-F12 results agree with the canonical ones to within 0.4 kcal mol-1, and this maximum error is reduced to below 0.2 kcal mol-1 when large local domains are used. For larger systems, results using different thresholds for the local approximations are compared to demonstrate that 1 kcal mol-1 level of accuracy can be achieved using our default settings. For a couple of difficult cases, it is demonstrated that the errors from individual approximations are only a fraction of 1 kcal mol-1, and the overall accuracy of the method does not rely on error compensations. In contrast to canonical calculations, the use of spin-orbitals does not lead to a significant increase of computational time and memory usage in the most expensive steps of PNO-R/UCCSD(T)-F12 calculations. The only exception is the iterative solution of the (T) amplitudes, which can be avoided without significant errors by using a perturbative treatment of the off-diagonal coupling, known as (T1) approximation. For most systems, even the semicanonical approximation (T0) leads only to small errors in relative energies. Our program is well parallelized and capable of computing accurate correlation energies for molecules with 100-200 atoms using augmented triple-ζ basis sets in less than a day of elapsed time on a small computer cluster.
Collapse
Affiliation(s)
- Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
23
|
Sorathia K, Tew DP. Basis set extrapolation in pair natural orbital theories. J Chem Phys 2020; 153:174112. [PMID: 33167642 DOI: 10.1063/5.0022077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the results of a benchmark study of the effect of Pair Natural Orbital (PNO) truncation errors on the performance of basis set extrapolation. We find that reliable conclusions from the application of Helgaker's extrapolation method are only obtained when using tight PNO thresholds of at least 10-7. The use of looser thresholds introduces a significant risk of observing a false basis set convergence and underestimating the residual basis set errors. We propose an alternative extrapolation approach based on the PNO truncation level that only requires a single basis set and show that it is a viable alternative to hierarchical basis set extrapolation methods.
Collapse
Affiliation(s)
- Kesha Sorathia
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, GermanyUniversity of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Kumar A, Neese F, Valeev EF. Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. J Chem Phys 2020; 153:094105. [PMID: 32891102 DOI: 10.1063/5.0012753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a near-linear scaling formulation of the explicitly correlated coupled-cluster singles and doubles with the perturbative triples method [CCSD(T)F12¯] for high-spin states of open-shell species. The approach is based on the conventional open-shell CCSD formalism [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)] utilizing the domain local pair-natural orbitals (DLPNO) framework. The use of spin-independent set of pair-natural orbitals ensures exact agreement with the closed-shell formalism reported previously, with only marginally impact on the cost (e.g., the open-shell formalism is only 1.5 times slower than the closed-shell counterpart for the C160H322 n-alkane, with the measured size complexity of ≈1.2). Evaluation of coupled-cluster energies near the complete-basis-set (CBS) limit for open-shell systems with more than 550 atoms and 5000 basis functions is feasible on a single multi-core computer in less than 3 days. The aug-cc-pVTZ DLPNO-CCSD(T)F12¯ contribution to the heat of formation for the 50 largest molecules among the 348 core combustion species benchmark set [J. Klippenstein et al., J. Phys. Chem. A 121, 6580-6602 (2017)] had root-mean-square deviation (RMSD) from the extrapolated CBS CCSD(T) reference values of 0.3 kcal/mol. For a more challenging set of 50 reactions involving small closed- and open-shell molecules [G. Knizia et al., J. Chem. Phys. 130, 054104 (2009)], the aug-cc-pVQ(+d)Z DLPNO-CCSD(T)F12¯ yielded a RMSD of ∼0.4 kcal/mol with respect to the CBS CCSD(T) estimate.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|