1
|
Dong HL, Zheng CC, Dai L, Zhang XH, Tan ZJ. Effect of protein binding on the twist-stretch coupling of double-stranded RNA. J Chem Phys 2025; 162:145101. [PMID: 40197586 DOI: 10.1063/5.0260900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
The elasticities of RNAs are generally essential for their biological functions, and RNAs often become functional when interacting with their binding proteins. However, the effects of binding proteins on the elasticities of double-stranded (ds) RNAs, such as twist-stretch coupling, still remain little understood. Here, our extensive all-atom molecular dynamics simulations show that the twist-stretch coupling of dsRNAs can be reversed from positive to negative by their binding proteins. Our analyses revealed that such a reversing effect of binding proteins is attributed to the protein anchoring across the major groove of dsRNAs, which alters the dominating deformation pathway from a major-groove-mediated one to a helical-radius-mediated one through two base-pair parameters of slide and inclination. Meanwhile, the anchoring effect from binding proteins on dsRNAs is further ascribed to the strong electrostatic attractions between dsRNAs and the positively charged binding domain of the proteins.
Collapse
Affiliation(s)
- Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen-Chen Zheng
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Burguera S, Vidal L, Bauzá A. Aluminum Fluorides as Noncovalent Lewis Acids in Proteins: The Case of Phosphoryl Transfer Enzymes. Chempluschem 2025; 90:e202400578. [PMID: 39363715 DOI: 10.1002/cplu.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
The Protein Data Bank (PDB) was scrutinized for the presence of noncovalent O ⋅ ⋅ ⋅ Al Triel Bonding (TrB) interactions, involving protein residues (e. g. GLU and GLN), adenosine/guanine diphosphate moieties (ADP and GDP), water molecules and two aluminum fluorides (AlF3 and AlF4 -). The results were statistically analyzed, revealing a vast number of O ⋅ ⋅ ⋅ Al contacts in the active sites of phosphoryl transfer enzymes, with a marked directionality towards the Al σ-/π-hole. The physical nature of the TrBs studied herein was analyzed using Molecular Electrostatic Potential (MEP) maps, the Quantum Theory of Atoms in Molecules (QTAIM), the Non Covalent Interaction plot (NCIplot) visual index and Natural Bonding Orbital (NBO) studies. As far as our knowledge extends, it is the first time that O ⋅ ⋅ ⋅ Al TrBs are analyzed within a biological context, participating in protein trapping mechanisms related to phosphoryl transfer enzymes. Moreover, since they are involved in the stabilization of aluminum fluorides inside the protein's active site, we believe the results reported herein will be valuable for those scientists working in supramolecular chemistry, catalysis and rational drug design.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| | - Lenin Vidal
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| |
Collapse
|
3
|
Fortuna A, Costa PJ. Assessment of Halogen Off-Center Point-Charge Models Using Explicit Solvent Simulations. J Chem Inf Model 2023; 63:7464-7475. [PMID: 38010191 DOI: 10.1021/acs.jcim.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Compounds containing halogens can form halogen bonds (XBs) with biological targets such as proteins and membranes due to their anisotropic electrostatic potential. To accurately describe this anisotropy, off-center point-charge (EP) models are commonly used in force field methods, allowing the description of XBs at the molecular mechanics and molecular dynamics level. Various EP implementations have been documented in the literature, and despite being efficient in reproducing protein-ligand geometries and sampling of XBs, it is unclear how well these EP models predict experimental properties such as hydration free energies (ΔGhyd), which are often used to validate force field performance. In this work, we report the first assessment of three EP models using alchemical free energy calculations to predict ΔGhyd values. We show that describing the halogen anisotropy using some EP models can lead to a slight improvement in the prediction of the ΔGhyd when compared with the models without EP, especially for the chlorinated compounds; however, this improvement is not related to the establishment of XBs but is most likely due to the improvement of the sampling of hydrogen bonds. We also highlight the importance of the choice of the EP model, especially for the iodinated molecules, since a slight tendency to improve the prediction is observed for compounds with a larger σ-hole but significantly worse results were obtained for compounds that are weaker XB donors.
Collapse
Affiliation(s)
- Andreia Fortuna
- BioISI─Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Paulo J Costa
- BioISI─Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
4
|
Paul AR, Falsaperna M, Lavender H, Garrett MD, Serpell CJ. Selection of optimised ligands by fluorescence-activated bead sorting. Chem Sci 2023; 14:9517-9525. [PMID: 37712023 PMCID: PMC10498682 DOI: 10.1039/d3sc03581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
The chemistry of aptamers is largely limited to natural nucleotides, and although modifications of nucleic acids can enhance target aptamer affinity, there has not yet been a technology for selecting the right modifications in the right locations out of the vast number of possibilities, because enzymatic amplification does not transmit sequence-specific modification information. Here we show the first method for the selection of specific nucleoside modifications that increase aptamer binding efficacy, using the oncoprotein EGFR as a model target. Using fluorescence-activated bead sorting (FABS), we have successfully selected optimized aptamers from a library of >65 000 variations. Hits were identified by tandem mass spectrometry and validated by using an EGFR binding assay and computational docking studies. Our results provide proof of concept for this novel strategy for the selection of chemically optimised aptamers and offer a new method for rapidly synthesising and screening large aptamer libraries to accelerate diagnostic and drug discovery.
Collapse
Affiliation(s)
- Alexandra R Paul
- School of Chemistry and Forensic Sciences, Division of Natural Sciences, University of Kent Canterbury CT2 7NH UK
| | - Mario Falsaperna
- School of Chemistry and Forensic Sciences, Division of Natural Sciences, University of Kent Canterbury CT2 7NH UK
| | - Helen Lavender
- Avvinity Therapeutics 66 Prescot Street London E1 8NN UK
| | - Michelle D Garrett
- School of Biosciences, Division of Natural Sciences, University of Kent Canterbury CT2 7NJ UK
| | - Christopher J Serpell
- School of Chemistry and Forensic Sciences, Division of Natural Sciences, University of Kent Canterbury CT2 7NH UK
- School of Pharmacy, University College London London WC1N 1AX UK
| |
Collapse
|
5
|
Piña MDLN, Bauzá A. On the Importance of Halogen and Chalcogen Bonds in the Solid State of Nucleic Acids: A Combined Crystallographic and Theoretical Perspective. Int J Mol Sci 2023; 24:13035. [PMID: 37685843 PMCID: PMC10488009 DOI: 10.3390/ijms241713035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, intra- and intermolecular halogen and chalcogen bonds (HlgBs and ChBs, respectively) present in the solid state of nucleic acids (NAs) have been studied at the RI-MP2/def2-TZVP level of theory. To achieve this, a Protein Data Bank (PDB) survey was carried out, revealing a series of structures in which Br/I or S/Se/Te atoms belonging to nucleobases or pentose rings were involved in noncovalent interactions (NCIs) with electron-rich species. The energetics and directionality of these NCIs were rationalized through a computational study, which included the use of Molecular Electrostatic Potential (MEP) surfaces, the Quantum Theory of Atoms in Molecules (QTAIM), and Non Covalent Interaction plot (NCIplot) and Natural Bonding Orbital (NBO) techniques.
Collapse
Affiliation(s)
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
6
|
Zhou L, Li J, Shi Y, Wu L, Zhu W, Xu Z. Preferred microenvironments of halogen bonds and hydrogen bonds revealed using statistics and QM/MM calculation studies. Phys Chem Chem Phys 2023. [PMID: 37367726 DOI: 10.1039/d3cp02096g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hydrogen bonds (HBs) and halogen bonds (XBs) are two essential non-covalent interactions for molecular recognition and drug design. As proteins are heterogeneous in structure, the microenvironments of protein structures should have effects on the formation of HBs and XBs with ligands. However, there are no systematic studies reported on this effect to date. For quantitatively describing protein microenvironments, we defined the local hydrophobicities (LHs) and local dielectric constants (LDCs) in this study. With the defined parameters, we conducted an elaborate database survey on the basis of 22 011 ligand-protein structures to explore the microenvironmental preference of HBs (91 966 in total) and XBs (1436 in total). The statistics show that XBs prefer hydrophobic microenvironments compared to HBs. The polar residues like ASP are more likely to form HBs with ligands, while nonpolar residues such as PHE and MET prefer XBs. Both the LHs and LDCs (10.69 ± 4.36 for HBs; 8.86 ± 4.00 for XBs) demonstrate that XBs are prone to hydrophobic microenvironments compared with HBs with significant differences (p < 0.001), indicating that evaluating their strengths in the corresponding environments should be necessary. Quantum Mechanics-Molecular Mechanics (QM/MM) calculations reveal that in comparison with vacuum environments, the interaction energies of HBs and XBs are decreased to varying degrees given different microenvironments. In addition, the strengths of HBs are impaired more than those of XBs when the local dielectric constant's difference between the XB microenvironments and the HB microenvironments is large.
Collapse
Affiliation(s)
- Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jintian Li
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
7
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
8
|
Abstract
Quantum calculations study the potential of an intramolecular H-bond between the halogen atom (X) of a halobenzene and a substituent placed ortho to it, to amplify the ability of X to engage in a halogen bond (XB) with a Lewis base. H-bonding substituents NH2, CH2CH2OH, CH2OH, OH, and COOH were added to halobenzenes (X = Cl, Br, I). The amino group had little effect, but those containing OH increased the CX···N XB energy to a NH3 nucleophile by about 0.5 kcal/mol; the increment associated with COOH is larger, nearly 2 kcal/mol. These energy increments were approximately doubled if two such H-bonding substituents are present. Combining a pair of ortho COOH groups with an electron-withdrawing NO2 group in the para position has a particularly large effect, raising the XB energy by about 4 kcal/mol, which can amount to as much as a 4-fold magnification.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
9
|
Gomila RM, Frontera A, Bauzá A. A Comprehensive Ab Initio Study of Halogenated A···U and G···C Base Pair Geometries and Energies. Int J Mol Sci 2023; 24:5530. [PMID: 36982603 PMCID: PMC10056977 DOI: 10.3390/ijms24065530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Unraveling the binding preferences involved in the formation of a supramolecular complex is key to properly understand molecular recognition and aggregation phenomena, which are of pivotal importance to biology. The halogenation of nucleic acids has been routinely carried out for decades to assist in their X-ray diffraction analysis. The incorporation of a halogen atom on a DNA/RNA base not only affected its electronic distribution, but also expanded the noncovalent interactions toolbox beyond the classical hydrogen bond (HB) by incorporating the halogen bond (HalB). In this regard, an inspection of the Protein Data Bank (PDB) revealed 187 structures involving halogenated nucleic acids (either unbound or bound to a protein) where at least 1 base pair (BP) exhibited halogenation. Herein, we were interested in disclosing the strength and binding preferences of halogenated A···U and G···C BPs, which are predominant in halogenated nucleic acids. To achieve that, computations at the RI-MP2/def2-TZVP level of theory together with state of the art theoretical modeling tools (including the computation of molecular electrostatic potential (MEP) surfaces, the quantum theory of "Atoms in Molecules" (QTAIM) and the non-covalent interactions plot (NCIplot) analyses) allowed for the characterization of the HB and HalB complexes studied herein.
Collapse
Affiliation(s)
| | | | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| |
Collapse
|
10
|
Abstract
Quantum calculations study the manner in which the involvement of a halogen atom as a proton acceptor in one or more H bonds (HBs) affects the strength of the halogen bond (XB) it can form with a nucleophile aligned with the X σ-hole. A variety of Lewis acids wherein X = F, Cl, Br, and I are attached to a tetrel atom C or Ge engaged in a XB with nucleophile NH3. One, two, and three HF molecules were positioned perpendicular to the XB axis so that they could form a HB to the X atom. Each such HB strengthened the XB by an increment of 1 kcal/mol or more that does not attenuate as each new HB is added, potentially increasing the interaction energy manyfold. Additionally, the presence of one or more HBs facilitates the formation of a XB by molecules which are reluctant to engage in such a bond in the absence of these auxiliary interactions. Even the F atom, which avoids such a XB, can be coaxed to participate in a XB of moderate strength by one or more of these external HBs.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
11
|
Winiewska-Szajewska M, Czapinska H, Kaus-Drobek M, Fricke A, Mieczkowska K, Dadlez M, Bochtler M, Poznański J. Competition between electrostatic interactions and halogen bonding in the protein-ligand system: structural and thermodynamic studies of 5,6-dibromobenzotriazole-hCK2α complexes. Sci Rep 2022; 12:18964. [PMID: 36347916 PMCID: PMC9641685 DOI: 10.1038/s41598-022-23611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.12847.380000 0004 1937 1290Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | - Honorata Czapinska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Magdalena Kaus-Drobek
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Fricke
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Kinga Mieczkowska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michał Dadlez
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Scheiner S. Properties and Stabilities of Cyclic and Open Chains of Halogen Bonds. J Phys Chem A 2022; 126:6443-6455. [PMID: 36084144 DOI: 10.1021/acs.jpca.2c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Open and cyclic chains from two to eight units of ICl and IF are constructed and examined by density functional theory (DFT) calculations. These chains contain either I···I or I···X halogen bonds (XBs) where X refers to Cl or F. The closed rings are more stable than the open chains due to the presence of an additional XB and enhanced cooperativity. This pattern is true even for most trimers where there is sizable geometric distortion in the rings. I···F rings are generally more stable than the corresponding I···I cycles as the I···F bond is stronger than I···I even in the simple dimer. However, I···I rings are comparable in energy to I···Cl. It is possible to construct I···I rings of at least as large as eight units, which are held together exclusively by XBs. On the other hand, the maximum possible size of I···X rings is 6. Red shifts are observed in the I-X stretching frequency bands, which magnify as the chain, both cyclic and open, grows longer. The NMR chemical shielding of the I atoms increases for I···I chains but diminishes when I···Cl bonds are present.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
13
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
14
|
Mu K, Zhu Z, Abula A, Peng C, Zhu W, Xu Z. Halogen Bonds Exist between Noncovalent Ligands and Natural Nucleic Acids. J Med Chem 2022; 65:4424-4435. [PMID: 35276046 DOI: 10.1021/acs.jmedchem.1c01854] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because of their strong electron-rich properties, nucleic acids (NAs) can theoretically serve as halogen bond (XB) acceptors. From a PDB database survey, Kolář found that no XBs are formed between noncovalent ligands and NAs. Through statistical database analysis, quantum-mechanics/molecular-mechanics (QM/MM) optimizations, and energy calculations, we find that XBs formed between natural NAs and noncovalent ligands are primarily underestimated and that NAs can serve as XB acceptors to interact with noncovalent halogen ligands. Finally, through energy calculations, natural bond orbital analysis, and noncovalent interaction analysis, XBs are confirmed in 13 systems, among which two systems (445D and 4Q9Q) have relatively strong XBs. In addition, on the basis of energy scanning of four model systems, we explore the geometric rule for XB formation in NAs. This work will inspire researchers to utilize XBs in rational drug design targeting NAs.
Collapse
Affiliation(s)
- Kaijie Mu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengdan Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Amina Abula
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
15
|
Benito I, Gomila RM, Frontera A. On the energetic stability of halogen bonds involving metals: implications in crystal engineering. CrystEngComm 2022. [DOI: 10.1039/d2ce00545j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a combined computational and experimental analysis of the ability of square planar d8 transition metal complexes to establish unconventional halogen bonding interactions with chloro-, bromo- and iodopentafluorobenzene...
Collapse
|
16
|
Scheiner S. On the Ability of Nitrogen to Serve as an Electron Acceptor in a Pnicogen Bond. J Phys Chem A 2021; 125:10419-10427. [PMID: 34846149 DOI: 10.1021/acs.jpca.1c09213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whereas pnicogen atoms like P and As have been shown repeatedly to act as electron acceptors in pnicogen bonds, the same is not true of the more electronegative first-row N atom. Quantum calculations assess whether N can serve in this capacity in such bonds and under what conditions. There is a positive π-hole belt that surrounds the central N atom in the linear arrangement of NNNF, NNN-CN, and NNO, which can engage a NH3 base to form a pnicogen bond with binding energy between 3 and 5 kcal/mol. Within the context of a planar arrangement, the π-hole above the N in NO2OF, N(CN)3, and CF3NO2 is also capable of forming a pnicogen bond, the strongest of which amounts to 11 kcal/mol with NMe3 as base. In their pyramidal geometry, NF3 and N(NO2)3 engage with a base through the σ-hole on the central N, with variable binding energies between 2 and 9 kcal/mol. AIM and NBO provide somewhat different interpretations of the secondary interactions that occur in some of these complexes.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 United States
| |
Collapse
|
17
|
Forni A, Russo R, Rapeti G, Pieraccini S, Sironi M. Exploring Orthogonality between Halogen and Hydrogen Bonding Involving Benzene. Molecules 2021; 26:7126. [PMID: 34885707 PMCID: PMC8659280 DOI: 10.3390/molecules26237126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of orthogonality between halogen and hydrogen bonding, brought out by Ho and coworkers some years ago, has become a widely accepted idea within the chemists' community. While the original work was based on a common carbonyl oxygen as acceptor for both interactions, we explore here, by means of M06-2X, M11, ωB97X, and ωB97XD/aug-cc-PVTZ DFT calculations, the interdependence of halogen and hydrogen bonding with a shared π-electron system of benzene. The donor groups (specifically NCBr and H2O) were placed on either or the same side of the ring, according to a double T-shaped or a perpendicular geometry, respectively. The results demonstrate that the two interactions with benzene are not strictly independent on each other, therefore outlining that the orthogonality between halogen and hydrogen bonding, intended as energetical independence between the two interactions, should be carefully evaluated according to the specific acceptor group.
Collapse
Affiliation(s)
- Alessandra Forni
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, INSTM RU, Via Golgi 19, 20133 Milan, Italy
| | - Rosario Russo
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| | - Giacomo Rapeti
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| | - Stefano Pieraccini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, INSTM RU, Via Golgi 19, 20133 Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| | - Maurizio Sironi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, INSTM RU, Via Golgi 19, 20133 Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| |
Collapse
|
18
|
Frontera A, Bauzá A. Biological halogen bonds in protein-ligand complexes: a combined QTAIM and NCIPlot study in four representative cases. Org Biomol Chem 2021; 19:6858-6864. [PMID: 34319314 DOI: 10.1039/d1ob01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, the PDB has been manually scrutinized by using a subset of all PDB entries containing organic iodinated ligands. Four structures exhibiting short IA halogen bonding (HaB) contacts (A stands for the σ-hole acceptor) have been selected and further analysed. In most hits, the sigma-hole acceptor corresponds to an O-atom of the amido group belonging to the protein backbone. In a minority of hits, the electron donors are O, S, Se or π-systems of the amino-acid side chains. A judicious selection of four PDB structures presenting all four types of HaB interactions (C-IA, A = O, S, Se, π) has been performed. For these selected structures, a comprehensive RI-MP2/def2-TZVP study has been carried out to evaluate the HaB energetically. Moreover, the interactions have been characterized by combining the quantum theory of "atoms-in-molecules" (QTAIM) and the noncovalent interaction plot (NCIPlot) and rationalized using the molecular electrostatic potential (MEP) surface.
Collapse
Affiliation(s)
- Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | | |
Collapse
|
19
|
Bondarenko MA, Novikov AS, Abramov PA, Sakhapov IF, Sokolov MN, Adonin SA. 2,3,4,5-Tetraiodopyrrole as a building block for halogen bonding: Formation of supramolecular hybrids with organic iodide salts in solid state. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Nunes RS, Vila-Viçosa D, Costa PJ. Halogen Bonding: An Underestimated Player in Membrane–Ligand Interactions. J Am Chem Soc 2021; 143:4253-4267. [DOI: 10.1021/jacs.0c12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rafael Santana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
22
|
Scheiner S. Versatility of the Cyano Group in Intermolecular Interactions. Molecules 2020; 25:E4495. [PMID: 33007991 PMCID: PMC7582283 DOI: 10.3390/molecules25194495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/17/2022] Open
Abstract
Several cyano groups are added to an alkane, alkene, and alkyne group so as to construct a Lewis acid molecule with a positive region of electrostatic potential in the area adjoining these substituents. Although each individual cyano group produces only a weak π-hole, when two or more such groups are properly situated, they can pool their π-holes into one much more intense positive region that is located midway between them. A NH3 base is attracted to this site, where it forms a strong noncovalent bond to the Lewis acid, amounting to as much as 13.6 kcal/mol. The precise nature of the bonding varies a bit from one complex to the next but typically contains a tetrel bond to the C atoms of the cyano groups or the C atoms of the linkage connecting the C≡N substituents. The placement of the cyano groups on a cyclic system like cyclopropane or cyclobutane has a mild weakening effect upon the binding. Although F is comparable to C≡N in terms of electron-withdrawing power, the replacement of cyano by F substituents substantially weakens the binding with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA
| |
Collapse
|
23
|
Halogen-Bonded Guanine Base Pairs, Quartets and Ribbons. Int J Mol Sci 2020; 21:ijms21186571. [PMID: 32911856 PMCID: PMC7555031 DOI: 10.3390/ijms21186571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023] Open
Abstract
Halogen bonding is studied in different structures consisting of halogenated guanine DNA bases, including the Hoogsteen guanine–guanine base pair, two different types of guanine ribbons (R-I and R-II) consisting of two or three monomers, and guanine quartets. In the halogenated base pairs (except the Cl-base pair, which has a very non-planar structure with no halogen bonds) and R-I ribbons (except the At trimer), the potential N-X•••O interaction is sacrificed to optimise the N-X•••N halogen bond. In the At trimer, the astatines originally bonded to N1 in the halogen bond donating guanines have moved to the adjacent O6 atom, enabling O-At•••N, N-At•••O, and N-At•••At halogen bonds. The brominated and chlorinated R-II trimers contain two N-X•••N and two N-X•••O halogen bonds, whereas in the iodinated and astatinated trimers, one of the N-X•••N halogen bonds is lost. The corresponding R-II dimers keep the same halogen bond patterns. The G-quartets display a rich diversity of symmetries and halogen bond patterns, including N-X•••N, N-X•••O, N-X•••X, O-X•••X, and O-X•••O halogen bonds (the latter two facilitated by the transfer of halogens from N1 to O6). In general, halogenation decreases the stability of the structures. However, the stability increases with the increasing atomic number of the halogen, and the At-doped R-I trimer and the three most stable At-doped quartets are more stable than their hydrogenated counterparts. Significant deviations from linearity are found for some of the halogen bonds (with halogen bond angles around 150°).
Collapse
|
24
|
Abstract
The question as to whether the F atom can engage in a halogen bond (XB) remains unsettled. This issue is addressed via density functional theory calculations which pair a wide range of organic and inorganic F-acids with various sorts of Lewis bases. From an energetic perspective, perfluorinated hydrocarbons with sp, sp2, or sp3 C-hybridization are unable to form an XB with an N-base, but a very weak bond can be formed if electron-withdrawing C≡N substituents are added to the acid. There is little improvement for inorganic acids O2NF, FOF, ClF, BrF, SiF4, or GeF4, but F2 is capable of a stronger XB of up to 5 kcal/mol. These results are consistent with a geometric criterion, which compares the intermolecular equilibrium distance with the sum of atomic van der Waals radii. The intensity of the σ-hole on the F atom has predictive value in that a Vs,max of at least 10-15 kcal/mol is required for XB formation. Adding a positive charge to the Lewis acid enhances the strength of any XB and even more so if the base is anionic. The acid-base interaction induces a contraction of the r(AF) covalent bond in the acid in most cases and a deshielding of the NMR signal of the F nucleus.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|