1
|
Liu K, Mou X, Li S. Stretching and twisting of double-stranded RNA under forces: Unwinding mechanism and base-pair dependent elasticity. J Chem Phys 2025; 162:125101. [PMID: 40130799 DOI: 10.1063/5.0245191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
We used all-atom molecular dynamics simulations to investigate the mechanical response of double-stranded RNA (dsRNA) by applying various forces. We used the helical rise and helical twist, as well as a newly defined helical diameter, to characterize the stretching and twisting of dsRNA. The results indicate that dsRNA unwinds when stretched, accompanied by a linear increase in helical rise and helical diameter. Then, we utilized the normal modes, which are linear combinations of helical modes, to elucidate the underlying mechanism of dsRNA unwinding from an energetic perspective. On the other hand, we employed a stiffness matrix based on a rigid base pair model to examine the base-pair dependence of twist elasticity for dsRNA, as well as stretch elasticities with respect to the helical rise and helical diameter. The results show that the force induces variations in the local elasticities and their couplings of dsRNA, which are closely related to the distributions of base pairs. The mean stretch and twist elasticities can be considered as constants within the measurement uncertainties; however, their couplings demonstrate a slight linear dependency on applied force.
Collapse
Affiliation(s)
- Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
2
|
Liu X, Liu F, Chhabra H, Maffeo C, Chen Z, Huang Q, Aksimentiev A, Arai T. A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport. Nat Commun 2024; 15:7210. [PMID: 39174536 PMCID: PMC11341817 DOI: 10.1038/s41467-024-51630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
| | - Fengyu Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Hemani Chhabra
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Zhuo Chen
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Tatsuo Arai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
3
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Qiao YP, Ren CL. Correlated Hybrid DNA Structures Explored by the oxDNA Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:109-117. [PMID: 38154122 DOI: 10.1021/acs.langmuir.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Thermodynamically, perfect DNA hybridization can be formed between probes and their corresponding targets due to the favorable energy. However, this is not the case dynamically. Here, we use molecular dynamics (MD) simulations based on the oxDNA model to investigate the process of DNA microarray hybridization. In general, correlated hybrid DNA structures are formed, including one probe associated with several targets as well as one target hybrid with multiple probes leading to the target-mediated hybridization. The formation of these two types of correlated structures largely depends on the surface coverage of the DNA microarray. Moreover, DNA sequence, DNA length, and spacer length have an impact on the structural formation. Our findings shed light on the dynamics of DNA hybridization, which is important for the application of DNA microarray.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Torkan E, Salmani-Tehrani M. Conformational dynamics and mechanical properties of biomimetic RNA, DNA, and RNA-DNA hybrid nanotubes: an atomistic molecular dynamics study. Phys Chem Chem Phys 2023. [PMID: 37309220 DOI: 10.1039/d3cp01028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the nanotechnology boom, artificially designed nucleic acid nanotubes have aroused interest due to their practical applications in nanorobotics, vaccine design, membrane channels, drug delivery, and force sensing. In this paper, computational study was performed to investigate the structural dynamics and mechanical properties of RNA nanotubes (RNTs), DNA nanotubes (DNTs), and RNA-DNA hybrid nanotubes (RDHNTs). So far, the structural and mechanical properties of RDHNTs have not been examined in experiments or theoretical calculations, and there is limited knowledge regarding these properties for RNTs. Here, the simulations were carried out using the equilibrium molecular dynamics (MD) and steered molecular dynamics (SMD) approaches. Using in-house scripting, we modeled hexagonal nanotubes composed of six double-stranded molecules connected by four-way Holliday junctions. Classical MD analyses were performed on the collected trajectory data to investigate structural properties. Analyses of the microscopic structural parameters of RDHNT indicated a structural transition from the A-form to a conformation between the A- and B-forms, which may be attributable to the increased rigidity of RNA scaffolds compared to DNA staples. Comprehensive research on the elastic mechanical properties was also conducted based on spontaneous thermal fluctuations of nanotubes and employing the equipartition theorem. The Young's modulus of RDHNT (E = 165 MPa) and RNT (E = 144 MPa) was found to be almost the same and nearly half of that found for DNT (E = 325 MPa). Furthermore, the results showed that RNT was more resistant to bending, torsional, and volumetric deformations than DNT and RDHNT. We also used non-equilibrium SMD simulations to acquire comprehensive knowledge of the mechanical response of nanotubes to tensile stress.
Collapse
Affiliation(s)
- Ehsan Torkan
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mehdi Salmani-Tehrani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
6
|
Qiao YP, Ren CL, Ma YQ. Two Different Ways of Stress Release in Supercoiled DNA Minicircles under DNA Nick. J Phys Chem B 2023; 127:4015-4021. [PMID: 37126597 DOI: 10.1021/acs.jpcb.2c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is generally believed that DNA nick is an effective way to release stress in supercoiled DNA, resulting from the twisting motion that individual strands rotate around the axis of the DNA helix. Here, we use MD simulations based on the oxDNA model to investigate the relaxation of 336 bp supercoiled minicircular DNA under DNA nick. Our simulations show that stress release, characterized by the abrupt decrease in linking number, may be induced by two types of DNA motion depending on the nick position. Except for the twisting motion, there is a writhing motion, that is, double strands collectively rotating with one plectoneme removal, which may occur in the process of DNA relaxation with the nick position in the loop region. Moreover, the writhing motion is more likely to occur in the DNA with relatively high hardness, such as C-G pairs. Our simulation results uncover the relationship between structural transformation, stress release, and DNA motion during the dynamic process under DNA nick, indicating the influence of nick position on the relaxation of the supercoiled DNA.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Xie C, Hu Y, Chen Z, Chen K, Pan L. Tuning curved DNA origami structures through mechanical design and chemical adducts. NANOTECHNOLOGY 2022; 33:405603. [PMID: 35772292 DOI: 10.1088/1361-6528/ac7d62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune the bending and twisting of curved DNA structures. Traditional tuning of the curved DNA structures was limited to controlling the in-plane-bending angle through varying the numbers of base pairs of deletions and insertions. Here, we developed two tuning strategies of curved DNA origami structures fromin silicoandin vitroaspects.In silico, the out-of-plane bending and twisting angles of curved structures were introduced, and were tuned through varying the patterns of base pair deletions and insertions.In vitro, a chemical adduct (ethidium bromide) was applied to dynamically tune a curved spiral. The 3D structural conformations, like chirality, of the curved DNA structures were finely tuned through these two strategies. The simulation and TEM results demonstrated that the patterns of base pair insertions and deletions and chemical adducts could effectively tune the bending and twisting of curved DNA origami structures. These strategies expand the programmable accuracy of curved DNA origami structures and have potential in building efficient dynamic functional nanodevices.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, People's Republic of China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
8
|
The Free-Energy Landscape of a Mechanically Bistable DNA Origami. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular simulations using coarse-grained models allow the structure, dynamics and mechanics of DNA origamis to be comprehensively characterized. Here, we focus on the free-energy landscape of a jointed DNA origami that has been designed to exhibit two mechanically stable states and for which a bistable landscape has been inferred from ensembles of structures visualized by electron microscopy. Surprisingly, simulations using the oxDNA model predict that the defect-free origami has a single free-energy minimum. The expected second state is not stable because the hinge joints do not simply allow free angular motion but instead lead to increasing free-energetic penalties as the joint angles relevant to the second state are approached. This raises interesting questions about the cause of this difference between simulations and experiment, such as how assembly defects might affect the ensemble of structures observed experimentally.
Collapse
|
9
|
Assenza S, Pérez R. Accurate Sequence-Dependent Coarse-Grained Model for Conformational and Elastic Properties of Double-Stranded DNA. J Chem Theory Comput 2022; 18:3239-3256. [PMID: 35394775 PMCID: PMC9097290 DOI: 10.1021/acs.jctc.2c00138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
We introduce MADna,
a sequence-dependent coarse-grained model of
double-stranded DNA (dsDNA), where each nucleotide is described by
three beads localized at the sugar, at the base moiety, and at the
phosphate group, respectively. The sequence dependence is included
by considering a step-dependent parametrization of the bonded interactions,
which are tuned in order to reproduce the values of key observables
obtained from exhaustive atomistic simulations from the literature.
The predictions of the model are benchmarked against an independent
set of all-atom simulations, showing that it captures with high fidelity
the sequence dependence of conformational and elastic features beyond
the single step considered in its formulation. A remarkably good agreement
with experiments is found for both sequence-averaged and sequence-dependent
conformational and elastic features, including the stretching and
torsion moduli, the twist–stretch and twist–bend couplings,
the persistence length, and the helical pitch. Overall, for the inspected
quantities, the model has a precision comparable to atomistic simulations,
hence providing a reliable coarse-grained description for the rationalization
of single-molecule experiments and the study of cellular processes
involving dsDNA. Owing to the simplicity of its formulation, MADna
can be straightforwardly included in common simulation engines. Particularly,
an implementation of the model in LAMMPS is made available on an online
repository to ease its usage within the DNA research community.
Collapse
|
10
|
Wong CK, Tang C, Schreck JS, Doye JPK. Characterizing the free-energy landscapes of DNA origamis. NANOSCALE 2022; 14:2638-2648. [PMID: 35129570 DOI: 10.1039/d1nr05716b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We show how coarse-grained modelling combined with umbrella sampling using distance-based order parameters can be applied to compute the free-energy landscapes associated with mechanical deformations of large DNA nanostructures. We illustrate this approach for the strong bending of DNA nanotubes and the potentially bistable landscape of twisted DNA origami sheets. The homogeneous bending of the DNA nanotubes is well described by the worm-like chain model; for more extreme bending the nanotubes reversibly buckle with the bending deformations localized at one or two "kinks". For a twisted one-layer DNA origami, the twist is coupled to the bending of the sheet giving rise to a free-energy landscape that has two nearly-degenerate minima that have opposite curvatures. By contrast, for a two-layer origami, the increased stiffness with respect to bending leads to a landscape with a single free-energy minimum that has a saddle-like geometry. The ability to compute such landscapes is likely to be particularly useful for DNA mechanotechnology and for understanding stress accumulation during the self-assembly of origamis into higher-order structures.
Collapse
Affiliation(s)
- Chak Kui Wong
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Chuyan Tang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - John S Schreck
- National Center for Atmospheric Research, Computational and Information Systems Laboratory, 850 Table Mesa Drive, Boulder, CO 80305, USA
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
11
|
KOH HEEYUEN, LEE JAEGYUNG, LEE JAEYOUNG, KIM RYAN, TABATA OSAMU, JIN-WOO KIM, KIM DONYUN. Design Approaches and Computational Tools for DNA Nanostructures. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2021; 2:86-100. [PMID: 35756857 PMCID: PMC9232119 DOI: 10.1109/ojnano.2021.3119913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Designing a structure in nanoscale with desired shape and properties has been enabled by structural DNA nanotechnology. Design strategies in this research field have evolved to interpret various aspects of increasingly more complex nanoscale assembly and to realize molecular-level functionality by exploring static to dynamic characteristics of the target structure. Computational tools have naturally been of significant interest as they are essential to achieve a fine control over both shape and physicochemical properties of the structure. Here, we review the basic design principles of structural DNA nanotechnology together with its computational analysis and design tools.
Collapse
Affiliation(s)
- HEEYUEN KOH
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - JAE GYUNG LEE
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - JAE YOUNG LEE
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - RYAN KIM
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Bio/Nano Technology Group, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| | - OSAMU TABATA
- Faculty of Engineering, Kyoto University of Advanced Science, Kyoto 621-8555, Japan
| | - KIM JIN-WOO
- Bio/Nano Technology Group, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701 USA
| | - DO-NYUN KIM
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Front Mol Biosci 2021; 8:693710. [PMID: 34235181 PMCID: PMC8256390 DOI: 10.3389/fmolb.2021.693710] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The oxDNA model of Deoxyribonucleic acid has been applied widely to systems in biology, biophysics and nanotechnology. It is currently available via two independent open source packages. Here we present a set of clearly documented exemplar simulations that simultaneously provide both an introduction to simulating the model, and a review of the model's fundamental properties. We outline how simulation results can be interpreted in terms of-and feed into our understanding of-less detailed models that operate at larger length scales, and provide guidance on whether simulating a system with oxDNA is worthwhile.
Collapse
Affiliation(s)
- A. Sengar
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - T. E. Ouldridge
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - O. Henrich
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| | - L. Rovigatti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CNR Institute of Complex Systems, Sapienza University of Rome, Rome, Italy
| | - P. Šulc
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Skoruppa E, Voorspoels A, Vreede J, Carlon E. Length-scale-dependent elasticity in DNA from coarse-grained and all-atom models. Phys Rev E 2021; 103:042408. [PMID: 34005944 DOI: 10.1103/physreve.103.042408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
We investigate the influence of nonlocal couplings on the torsional and bending elasticities of DNA. Such couplings have been observed in the past by several simulation studies. Here, we use a description of DNA conformations based on the variables tilt, roll, and twist. Our analysis of both coarse-grained (oxDNA) and all-atom models indicates that these share strikingly similar features: there are strong off-site couplings for tilt-tilt and twist-twist, while they are much weaker in the roll-roll case. By developing an analytical framework to estimate bending and torsional persistence lengths in nonlocal DNA models, we show how off-site interactions generate a length-scale-dependent elasticity. Based on the simulation-generated elasticity data, the theory predicts a significant length-scale-dependent effect on torsional fluctuations but only a modest effect on bending fluctuations. These results are in agreement with experiments probing DNA mechanics from single base pair to kilobase pair scales.
Collapse
Affiliation(s)
- Enrico Skoruppa
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Aderik Voorspoels
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Jocelyne Vreede
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|