1
|
Wang R, Ji X, Wang H, Liu W. Kinetic Network in Milestoning: Clustering, Reduction, and Transition Path Analysis. J Chem Theory Comput 2024; 20:5439-5450. [PMID: 38885437 DOI: 10.1021/acs.jctc.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We present a reduction of the Milestoning (ReM) algorithm to analyze the high-dimensional Milestoning kinetic network. The algorithm reduces the Milestoning network to low dimensions but preserves essential kinetic information, such as local residence time, exit time, and mean first passage time between any two states. This is achieved in three steps. First, nodes (milestones) in the high-dimensional Milestoning network are grouped into clusters based on the metastability identified by an auxiliary continuous-time Markov chain. Our clustering method is applicable not only to time-reversible networks but also to nonreversible networks generated from practical simulations with statistical fluctuations. Second, a reduced network is established via network transformation, containing only the core sets of clusters as nodes. Finally, transition pathways are analyzed in the reduced network based on the transition path theory. The algorithm is illustrated using a toy model and a solvated alanine dipeptide in two and four dihedral angles.
Collapse
Affiliation(s)
- Ru Wang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiaojun Ji
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong 266237, P. R. China
- Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Hao Wang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
2
|
Ji X, Wang R, Wang H, Liu W. On committor functions in milestoning. J Chem Phys 2023; 159:244115. [PMID: 38153148 DOI: 10.1063/5.0180513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
As an optimal one-dimensional reaction coordinate, the committor function not only describes the probability of a trajectory initiated at a phase space point first reaching the product state before reaching the reactant state but also preserves the kinetics when utilized to run a reduced dynamics model. However, calculating the committor function in high-dimensional systems poses significant challenges. In this paper, within the framework of milestoning, exact expressions for committor functions at two levels of coarse graining are given, including committor functions of phase space point to point (CFPP) and milestone to milestone (CFMM). When combined with transition kernels obtained from trajectory analysis, these expressions can be utilized to accurately and efficiently compute the committor functions. Furthermore, based on the calculated committor functions, an adaptive algorithm is developed to gradually refine the transition state region. Finally, two model examples are employed to assess the accuracy of these different formulations of committor functions.
Collapse
Affiliation(s)
- Xiaojun Ji
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Ru Wang
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Hao Wang
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
3
|
Abstract
Cell penetrating peptides (CPPs) are natural agents that efficiently permeate biological membranes. They are frequently positively charged, which is surprising since membranes pose hydrophobic barriers. In this Perspective, I discuss computations and experiments of a permeation model that couples permeant displacement with a membrane defect. We call the proposed mechanism Defect Assisted by Charge (DAC) and illustrate that it reduces the free energy barrier for translocation. A metastable state at the center of the membrane may be observed due to the charge interactions with the phospholipid head groups at the two leaflets. The combination of experiments and simulations sheds light on the mechanisms of a charged peptide translocation across phospholipid membranes.
Collapse
Affiliation(s)
- Ron Elber
- The Department of Chemistry, The Oden Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Song K, Makarov DE, Vouga E. The effect of time resolution on the observed first passage times in diffusive dynamics. J Chem Phys 2023; 158:111101. [PMID: 36948823 DOI: 10.1063/5.0142166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Single-molecule and single-particle tracking experiments are typically unable to resolve fine details of thermal motion at short timescales where trajectories are continuous. We show that, when a diffusive trajectory xt is sampled at finite time intervals δt, the resulting error in measuring the first passage time to a given domain can exceed the time resolution of the measurement by more than an order of magnitude. Such surprisingly large errors originate from the fact that the trajectory may enter and exit the domain while being unobserved, thereby lengthening the apparent first passage time by an amount that is larger than δt. Such systematic errors are particularly important in single-molecule studies of barrier crossing dynamics. We show that the correct first passage times, as well as other properties of the trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that reintroduces unobserved first passage events probabilistically.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Aristoff D, Copperman J, Simpson G, Webber RJ, Zuckerman DM. Weighted ensemble: Recent mathematical developments. J Chem Phys 2023; 158:014108. [PMID: 36610976 PMCID: PMC9822651 DOI: 10.1063/5.0110873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Weighted ensemble (WE) is an enhanced sampling method based on periodically replicating and pruning trajectories generated in parallel. WE has grown increasingly popular for computational biochemistry problems due, in part, to improved hardware and accessible software implementations. Algorithmic and analytical improvements have played an important role, and progress has accelerated in recent years. Here, we discuss and elaborate on the WE method from a mathematical perspective, highlighting recent results that enhance the computational efficiency. The mathematical theory reveals a new strategy for optimizing trajectory management that approaches the best possible variance while generalizing to systems of arbitrary dimension.
Collapse
Affiliation(s)
- D. Aristoff
- Mathematics, Colorado State University, Fort Collins, CO 80521 USA
| | - J. Copperman
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA
| | - G. Simpson
- Mathematics, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - R. J. Webber
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 USA
| | - D. M. Zuckerman
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
6
|
Cardenas AE, Hunter A, Wang H, Elber R. ScMiles2: A Script to Conduct and Analyze Milestoning Trajectories for Long Time Dynamics. J Chem Theory Comput 2022; 18:6952-6965. [PMID: 36191005 PMCID: PMC10336853 DOI: 10.1021/acs.jctc.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Milestoning is a theory and an algorithm that computes kinetics and thermodynamics at long time scales. It is based on partitioning the (phase) space into cells and running a large number of short trajectories between the boundaries of the cells. The termination points of the trajectories are analyzed with the Milestoning theory to obtain kinetic and thermodynamic information. Managing the tens to hundreds of thousands of Milestoning trajectories is a challenge, which we handle with a python script, ScMiles. Here, we introduce a new version of the python script ScMiles2 to conduct Milestoning simulations. Major enhancements are: (i) post analysis of Milestoning trajectories to obtain the free energy, mean first passage time, the committor function, and exit times; (ii) similar to (i) but the post analysis is for a single long trajectory; (iii) we support the use of the GROMACS software in addition to NAMD; (iv) a restart option; (v) the automated finding, sampling, and launching trajectories from new milestones that are found on the fly; and (vi) support Milestoning calculations with several coarse variables and for complex reaction coordinates. We also evaluate the simulation parameters and suggest new algorithmic features to enhance the rate of convergence of observables. We propose the use of an iteration-averaged kinetic matrix for a rapid approach to asymptotic values. Illustrations are provided for small systems and one large example.
Collapse
Affiliation(s)
- Alfredo E. Cardenas
- The Oden Institute, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Allison Hunter
- The Oden Institute, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Hao Wang
- The Oden Institute, University of Texas at Austin, Austin, Texas, 78712, USA
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Ron Elber
- The Oden Institute, University of Texas at Austin, Austin, Texas, 78712, USA
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
7
|
Cardenas AE, Drexler CI, Nechushtai R, Mittler R, Friedler A, Webb LJ, Elber R. Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation. J Phys Chem B 2022; 126:2834-2849. [PMID: 35388695 PMCID: PMC9074375 DOI: 10.1021/acs.jpcb.1c10966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144-67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144-67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is -0.4 kcal mol-1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.
Collapse
Affiliation(s)
- Alfredo E. Cardenas
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chad I. Drexler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel
| | - Ron Mittler
- The Department of Surgery, University of Missouri School of Medicine. Christopher S. Bond Life Sciences Center, University of Missouri. 1201 Rollins St, Columbia, MO 65201, USA
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ron Elber
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
9
|
Narayan B, Buchete NV, Elber R. Computer Simulations of the Dissociation Mechanism of Gleevec from Abl Kinase with Milestoning. J Phys Chem B 2021; 125:5706-5715. [PMID: 33930271 DOI: 10.1021/acs.jpcb.1c00264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gleevec (a.k.a., imatinib) is an important anticancer (e.g., chronic myeloid leukemia) chemotherapeutic drug due to its inhibitory interaction with the Abl kinase. Here, we use atomically detailed simulations within the Milestoning framework to study the molecular dissociation mechanism of Gleevec from Abl kinase. We compute the dissociation free energy profile, the mean first passage time for unbinding, and explore the transition state ensemble of conformations. The milestones form a multidimensional network with average connectivity of about 2.93, which is significantly higher than the connectivity for a one-dimensional reaction coordinate. The free energy barrier for Gleevec dissociation is estimated to be ∼10 kcal/mol, and the exit time is ∼55 ms. We examined the transition state conformations using both, the committor and transition function. We show that near the transition state the highly conserved salt bridge K217 and E286 is transiently broken. Together with the calculated free energy profile, these calculations can advance the understanding of the molecular interaction mechanisms between Gleevec and Abl kinase and play a role in future drug design and optimization studies.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.,Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicolae-Viorel Buchete
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.,Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ron Elber
- Oden Institute for Computational Engineering and Science, Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| |
Collapse
|