1
|
Gustafson A, Kahr B. Optical Activity of Nonactin and Its Cation Complexes. Chirality 2024; 36:e23703. [PMID: 39034362 DOI: 10.1002/chir.23703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Nonactin is a non-enantiomorphous (S4 symmetric), optically active natural product with a specific rotation of zero in solutions at all frequencies and temperatures. All optically active, non-enantiomorphous natural products have specific rotations of zero as a consequence of the spatial average of bisignate chiroptical (magnetoelectric or gyration) tensors with equal and opposite eigenvalues. Zeros that arise in the spatial average are distinct in principle, though not necessarily in practice, from zeros that arise in optical inactivity-chiroptical tensors with zero values for all elements as in centric molecules. Nonactin would be measurably optically active when oriented. The anisotropy of the optical activity of nonactin and its cation complexes, likewise S4 symmetric, are studied here by computation to emphasize the infelicitous linkage between optical activity and chirality. Computations show that changes in the conformation of the nonactin macrocycle upon complexation principally are responsible for diminishing the computed optical activity; the metals are incidental.
Collapse
Affiliation(s)
- Afton Gustafson
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| |
Collapse
|
2
|
de Wergifosse M, Grimme S. The eXact integral simplified time-dependent density functional theory (XsTD-DFT). J Chem Phys 2024; 160:204110. [PMID: 38805556 DOI: 10.1063/5.0206380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
In the framework of simplified quantum chemistry methods, we introduce the eXact integral simplified time-dependent density functional theory (XsTD-DFT). This method is based on the simplified time-dependent density functional theory (sTD-DFT), where all semi-empirical two-electron integrals are replaced by exact one- and two-center two-electron integrals, while other approximations from sTD-DFT are kept. The performance of this new parameter-free XsTD-DFT method was benchmarked on excited state and (non)linear response properties, including ultra-violet/visible absorption, first hyperpolarizability, and two-photon absorption (2PA). For a set of 77 molecules, the results from the XsTDA approach were compared to the TDA data. XsTDA/B3LYP excitation energies only deviate on average by 0.14 eV from TDA while drastically cutting computational costs by a factor of 20 or more depending on the energy threshold chosen. The absolute deviations of excitation energies with respect to the full scheme are decreasing with increasing system size, showing the suitability of XsTDA/XsTD-DFT to treat large systems. Comparing XsTDA and its predecessor sTDA, the new scheme generally improves excitation energies and oscillator strengths, in particular, for charge transfer states. TD-DFT first hyperpolarizability frequency dispersions for a set of push-pull π-conjugated molecules are faithfully reproduced by XsTD-DFT, while the previous sTD-DFT method provides redshifted resonance energy positions. Excellent performance with respect to the experiment is observed for the 2PA spectrum of the enhanced green fluorescent protein. The obtained robust accuracy similar to TD-DFT at a fraction of the computational cost opens the way for a plethora of applications for large systems and in high throughput screening studies.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Theoretical Chemistry Group, Molecular Chemistry, Materials and Catalysis Division (MOST), Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
3
|
Jayadev NK, Skomorowski W, Krylov AI. Molecular-Orbital Framework of Two-Electron Processes: Application to Auger and Intermolecular Coulomb Decay. J Phys Chem Lett 2023; 14:8612-8619. [PMID: 37728255 DOI: 10.1021/acs.jpclett.3c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
States with core- or inner-shell vacancies, which are commonly created by absorption of high-energy photons, can decay by a two-electron process in which one electron fills the core hole and the second one is ejected. These processes accompany many X-ray spectroscopies. Depending on the nature of the initial core- or inner-shell-hole state and the decay valence-hole state, these processes are called Auger decay, intermolecular Coulomb decay, or electron-transfer-mediated decay. To connect many-body wave functions of the initial and final states with the molecular orbital picture of the decay, we introduce the concept of natural Auger orbitals (NAOs). NAOs are obtained by a two-step singular value decomposition of the two-body Dyson orbitals, reduced quantities that enter the expression of the decay rate in the Feshbach-Fano treatment. NAOs afford chemical insight and interpretation of the high-level ab initio calculations of Auger decay and related two-electron relaxation processes.
Collapse
Affiliation(s)
- Nayanthara K Jayadev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Wojciech Skomorowski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Pokhilko P, Zgid D. Natural orbitals and two-particle correlators as tools for the analysis of effective exchange couplings in solids. Phys Chem Chem Phys 2023; 25:21267-21279. [PMID: 37548912 DOI: 10.1039/d3cp01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Using generalizations of spin-averaged natural orbitals and two-particle charge correlators for solids, we investigate the electronic structure of antiferromagnetic transition-metal oxides with a fully self-consistent, imaginary-time GW method. Our findings disagree with the Goodenough-Kanamori (GK) rules that are commonly used for the qualitative interpretation of such solids. First, we found a strong dependence of the natural orbital occupancies on momenta, contradicting GK assumptions. Second, along the momentum path, the character of natural orbitals changes. In particular, the contributions of oxygen 2s orbitals are important, which has not been considered in the GK rules. To analyze the influence of the electronic correlation on the values of effective exchange coupling constants, we use both natural orbitals and two-particle correlators and show that electronic screening modulates the degree of superexchange by stabilizing the charge-transfer contributions, which greatly affects these coupling constants. Finally, we give a set of predictions and recommendations regarding the use of density functional, Green's function, and wave-function methods for evaluating effective magnetic couplings in molecules and solids.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Niemeyer N, Eschenbach P, Bensberg M, Tölle J, Hellmann L, Lampe L, Massolle A, Rikus A, Schnieders D, Unsleber JP, Neugebauer J. The subsystem quantum chemistry program
Serenity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Moritz Bensberg
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lars Hellmann
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lukas Lampe
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anja Massolle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anton Rikus
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - David Schnieders
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Jan P. Unsleber
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| |
Collapse
|
6
|
Beaujean P, Sanguinet L, Rodriguez V, Castet F, Champagne B. Multi-State Second-Order Nonlinear Optical Switches Incorporating One to Three Benzazolo-Oxazolidine Units: A Quantum Chemistry Investigation. Molecules 2022; 27:2770. [PMID: 35566119 PMCID: PMC9105456 DOI: 10.3390/molecules27092770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
This contribution employs quantum chemistry methods to describe the variations of the second nonlinear optical responses of molecular switches based on benzazolo-oxazolidine (BOX) units, connected by π-linkers, along their successive opening/closing. Under the fully closed forms, all of them display negligible first hyperpolarizability (β) values. When one BOX is opened, which is sketched as C→O, a push-pull π-conjugated segment is formed, having the potential to enhance β and to set the depolarization ratio (DR) to its one-dimensional-like value (DR = 5). This is observed when only one BOX is open, either for the monoBOX species (C→O) or for the diBOX (CC→CO) and triBOX (CCC→CCO) compounds, i.e., when the remaining BOXs stay closed. The next BOX openings have much different effects. For the diBOXs, the second opening (CO→OO) is associated with a decrease of β, and this decrease is tuned by controlling the conformation of the π-linker, i.e., the centrosymmetry of the whole compound because β vanishes in centrosymmetric compounds. For the triBOXs, the second opening gives rise to a Λ-shape compound, with a negligible change of β, but a decrease of the DR whereas, along the third opening, β remains similar and the DR decreases to the typical value of octupolar systems (DR = 1.5).
Collapse
Affiliation(s)
- Pierre Beaujean
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, B-5000 Namur, Belgium;
| | - Lionel Sanguinet
- MOLTECH-Anjou (CNRS-UMR 6200), Université d’Angers, F-49045 Angers, France;
| | - Vincent Rodriguez
- CNRS, Bordeaux INP, ISM, Univ. Bordeaux, UMR 5255, F-33400 Talence, France; (V.R.); (F.C.)
| | - Frédéric Castet
- CNRS, Bordeaux INP, ISM, Univ. Bordeaux, UMR 5255, F-33400 Talence, France; (V.R.); (F.C.)
| | - Benoît Champagne
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, B-5000 Namur, Belgium;
| |
Collapse
|
7
|
Toffoli D, Medves M, Fronzoni G, Coccia E, Stener M, Sementa L, Fortunelli A. Plasmonic Circular Dichroism in Chiral Gold Nanowire Dimers. Molecules 2021; 27:molecules27010093. [PMID: 35011325 PMCID: PMC8746476 DOI: 10.3390/molecules27010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
We report a computational study at the time-dependent density functional theory (TDDFT) level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore whether it is possible to overcome destructive interference in single nanowires that damp chiral response in these systems and to achieve intense plasmonic circular dichroism (CD) through a coupling between the nanostructures. We predict a huge enhancement of circular dichroism at the plasmon resonance when two chiral nanowires are intimately coupled in an achiral relative arrangement. Such an effect is even more pronounced when two chiral nanowires are coupled in a chiral relative arrangement. Individual component maps of rotator strength, partial contributions according to the magnetic dipole component, and induced densities allow us to fully rationalize these findings, thus opening the way to the field of plasmonic CD and its rational design.
Collapse
Affiliation(s)
- Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (D.T.); (M.M.); (G.F.); (E.C.)
| | - Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (D.T.); (M.M.); (G.F.); (E.C.)
| | - Giovanna Fronzoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (D.T.); (M.M.); (G.F.); (E.C.)
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (D.T.); (M.M.); (G.F.); (E.C.)
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (D.T.); (M.M.); (G.F.); (E.C.)
- Correspondence: (M.S.); (A.F.)
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy;
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy;
- Correspondence: (M.S.); (A.F.)
| |
Collapse
|
8
|
Feng R, Yu X, Autschbach J. Spin-Orbit Natural Transition Orbitals and Spin-Forbidden Transitions. J Chem Theory Comput 2021; 17:7531-7544. [PMID: 34792327 DOI: 10.1021/acs.jctc.1c00776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural transition orbitals (NTOs) are in widespread use for visualizing and analyzing electronic transitions. The present work introduces the analysis of formally spin-forbidden transitions with the help of complex-valued spin-orbit (SO) NTOs. The analysis specifically focuses on the components in such transitions that cause their intensity to be nonzero because of SO coupling. Transition properties such as transition dipole moments are partitioned into SO-NTO hole-particle pairs, such that contributions to the intensity from specific occupied and unoccupied orbitals are obtained. The method has been implemented within the restricted active space (RAS) self-consistent field wave function theory framework, with SO coupling treated by RAS state interaction. SO-NTOs have a broad range of potential applications, which is illustrated by the T2-S1 state mixing in pyrazine, spin-forbidden versus spin-allowed 4f-5d transitions in the Tb3+ ion, and the phosphorescence of tris(2-phenylpyridine) iridium [Ir(ppy)3].
Collapse
Affiliation(s)
- Rulin Feng
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
9
|
Beaujean P, Champagne B, Grimme S, de Wergifosse M. All-Atom Quantum Mechanical Calculation of the Second-Harmonic Generation of Fluorescent Proteins. J Phys Chem Lett 2021; 12:9684-9690. [PMID: 34590850 DOI: 10.1021/acs.jpclett.1c02911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent proteins (FPs) are biotags of choice for second-harmonic imaging microscopy (SHIM). Because of their large size, computing their second-harmonic generation (SHG) response represents a great challenge for quantum chemistry. In this contribution, we propose a new all-atom quantum mechanics methodology to compute SHG of large systems. This is now possible because of two recent implementations: the tight-binding GFN2-xTB method to optimize geometries and a related version of the simplified time-dependent density functional theory (sTD-DFT-xTB) to evaluate quadratic response functions. In addition, a new dual-threshold configuration selection scheme is introduced to reduce the computational costs while retaining overall similar accuracy. This methodology was tested to evaluate the SHG of the proteins iLOV and bacteriorhodopsin (bR). In the case of bR, quantitative agreement with respect to experiment was reached for the out-of-resonance low-energy part of the βHRS frequency dispersion. This work paves the way toward an accurate prediction of the SHG of large structures-a requirement for the design of new and improved SHIM biotags.
Collapse
Affiliation(s)
- Pierre Beaujean
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Berings. 4, D-53115 Bonn, Germany
| | - Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Berings. 4, D-53115 Bonn, Germany
| |
Collapse
|
10
|
Pokhilko P, Zgid D. Interpretation of multiple solutions in fully iterative GF2 and GW schemes using local analysis of two-particle density matrices. J Chem Phys 2021; 155:024101. [DOI: 10.1063/5.0055191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
de Wergifosse M, Grimme S. Perspective on Simplified Quantum Chemistry Methods for Excited States and Response Properties. J Phys Chem A 2021; 125:3841-3851. [PMID: 33928774 DOI: 10.1021/acs.jpca.1c02362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We review recent developments in the framework of simplified quantum chemistry for excited state and optical response properties (sTD-DFT) and present future challenges for new method developments to improve accuracy and extend the range of application. In recent years, the scope of sTD-DFT was extended to molecular response calculations of the polarizability, optical rotation, first hyperpolarizability, two-photon absorption (2PA), and excited-state absorption for large systems with hundreds to thousands of atoms. The recently introduced spin-flip simplified time-dependent density functional theory (SF-sTD-DFT) variant enables an ultrafast treatment for diradicals and related strongly correlated systems. A few drawbacks were also identified, specifically for the computation of 2PA cross sections. We propose solutions to this problem and how to generally improve the accuracy of simplified schemes. New possible simplified schemes are also introduced for strongly correlated systems, e.g., with a second-order perturbative correlation correction. Interpretation tools that can extract chemical structure-property relationships from excited state or response calculations are also discussed. In particular, the recently introduced method-agnostic RespA approach based on natural response orbitals (NROs) as the key concept is employed.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Nikerov DS, Ashatkina MA, Shiryaev VA, Tkachenko IM, Rybakov VB, Reznikov AN, Klimochkin YN. Synthesis of non-racemic dihydrofurans via Ni(II)-catalyzed asymmetric Michael addition. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|