1
|
Liu S, Wang C, Zhang B. Toward Predictive Coarse-Grained Simulations of Biomolecular Condensates. Biochemistry 2025; 64:1750-1761. [PMID: 40172489 DOI: 10.1021/acs.biochem.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Phase separation is a fundamental process that enables cellular organization by forming biomolecular condensates. These assemblies regulate diverse functions by creating distinct environments, influencing reaction kinetics, and facilitating processes such as genome organization, signal transduction, and RNA metabolism. Recent studies highlight the complexity of condensate properties, shaped by intrinsic molecular features and external factors such as temperature and pH. Molecular simulations serve as an effective approach to establishing a comprehensive framework for analyzing these influences, offering high-resolution insights into condensate stability, dynamics, and material properties. This review evaluates recent advancements in biomolecular condensate simulations, with a particular focus on coarse-grained 1-bead-per-amino-acid (1BPA) protein models, and emphasizes OpenABC, a tool designed to simplify and streamline condensate simulations. OpenABC supports the implementation of various coarse-grained force fields, enabling their performance evaluation. Our benchmarking identifies inconsistencies in phase behavior predictions across force fields, even though these models accurately capture single-chain statistics. This finding underscores the need for enhanced force field accuracy, achievable through enriched training data sets, many-body potentials, and advanced optimization techniques. Such refinements could significantly improve the predictive capacity of coarse-grained models, bridging molecular details with emergent condensate behaviors.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
von Bülow S, Tesei G, Zaidi FK, Mittag T, Lindorff-Larsen K. Prediction of phase-separation propensities of disordered proteins from sequence. Proc Natl Acad Sci U S A 2025; 122:e2417920122. [PMID: 40131954 PMCID: PMC12002312 DOI: 10.1073/pnas.2417920122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Phase separation is one possible mechanism governing the selective cellular enrichment of biomolecular constituents for processes such as transcriptional activation, mRNA regulation, and immune signaling. Phase separation is mediated by multivalent interactions of macromolecules including intrinsically disordered proteins and regions (IDRs). Despite considerable advances in experiments, theory, and simulations, the prediction of the thermodynamics of IDR phase behavior remains challenging. We combined coarse-grained molecular dynamics simulations and active learning to develop a fast and accurate machine learning model to predict the free energy and saturation concentration for phase separation directly from sequence. We validate the model using computational and previously measured experimental data, as well as new experimental data for six proteins. We apply our model to all 27,663 IDRs of chain length up to 800 residues in the human proteome and find that 1,420 of these (5%) are predicted to undergo homotypic phase separation with transfer free energies < -2 kBT. We use our model to understand the relationship between single-chain compaction and phase separation and find that changes from charge- to hydrophobicity-mediated interactions can break the symmetry between intra- and intermolecular interactions. We also provide proof of principle for how the model can be used in force field refinement. Our work refines and quantifies the established rules governing the connection between sequence features and phase-separation propensities, and our prediction models will be useful for interpreting and designing cellular experiments on the role of phase separation, and for the design of IDRs with specific phase-separation propensities.
Collapse
Affiliation(s)
- Sören von Bülow
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| | - Giulio Tesei
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| | - Fatima Kamal Zaidi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Kresten Lindorff-Larsen
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| |
Collapse
|
3
|
Latham AP, Zhu L, Sharon DA, Ye S, Willard AP, Zhang X, Zhang B. Microphase separation produces interfacial environment within diblock biomolecular condensates. eLife 2025; 12:RP90750. [PMID: 40136009 PMCID: PMC11942181 DOI: 10.7554/elife.90750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake UniversityHangzhouChina
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake UniversityHangzhouChina
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
4
|
von Bülow S, Tesei G, Lindorff-Larsen K. Machine learning methods to study sequence-ensemble-function relationships in disordered proteins. Curr Opin Struct Biol 2025; 92:103028. [PMID: 40081192 DOI: 10.1016/j.sbi.2025.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
Recent years have seen tremendous developments in the use of machine learning models to link amino-acid sequence, structure, and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences that comprise intrinsically disordered regions. We here review developments in the study of sequence-ensemble-function relationships of disordered proteins that exploit or are used to train machine learning models. These include methods for generating conformational ensembles and designing new sequences, and for linking sequences to biophysical properties and biological functions. We highlight how these developments are built on a tight integration between experiment, theory and simulations, and account for evolutionary constraints, which operate on sequences of disordered regions differently than on those of folded domains.
Collapse
Affiliation(s)
- Sören von Bülow
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Yasuda I, von Bülow S, Tesei G, Yamamoto E, Yasuoka K, Lindorff-Larsen K. Coarse-Grained Model of Disordered RNA for Simulations of Biomolecular Condensates. J Chem Theory Comput 2025; 21:2766-2779. [PMID: 40009520 DOI: 10.1021/acs.jctc.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Protein-RNA condensates are involved in a range of cellular activities. Coarse-grained molecular models of intrinsically disordered proteins have been developed to shed light on and predict single-chain properties and phase separation. An RNA model compatible with such models for disordered proteins would enable the study of complex biomolecular mixtures involving RNA. Here, we present a sequence-independent coarse-grained, two-beads-per-nucleotide model of disordered, flexible RNA based on a hydropathy scale. We parametrize the model, which we term CALVADOS-RNA, using a combination of bottom-up and top-down approaches to reproduce local RNA geometry and intramolecular interactions based on atomistic simulations and in vitro experiments. The model semiquantitatively captures several aspects of RNA-RNA and RNA-protein interactions. We examined RNA-RNA interactions by comparing calculated and experimental virial coefficients and nonspecific RNA-protein interaction by studying the reentrant phase behavior of protein-RNA mixtures. We demonstrate the utility of the model by simulating the formation of mixed condensates consisting of the disordered region of MED1 and RNA chains and the selective partitioning of disordered regions from transcription factors into these and compare the results to experiments. Despite the simplicity of our model, we show that it captures several key aspects of protein-RNA interactions and may therefore be used as a baseline model to study several aspects of the biophysics and biology of protein-RNA condensates.
Collapse
Affiliation(s)
- Ikki Yasuda
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Chakravarti A, Joseph JA. Accurate prediction of thermoresponsive phase behavior of disordered proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641540. [PMID: 40093057 PMCID: PMC11908177 DOI: 10.1101/2025.03.04.641540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Protein responses to environmental stress, particularly temperature fluctuations, have long been a subject of investigation, with a focus on how proteins maintain homeostasis and exhibit thermoresponsive properties. While UCST-type (upper critical solution temperature) phase behavior has been studied extensively and can now be predicted reliably using computational models, LCST-type (lower critical solution temperature) phase transitions remain less explored, with a lack of computational models capable of accurate prediction. This gap limits our ability to probe fully how proteins undergo phase transitions in response to temperature changes. Here, we introduce Mpipi-T, a residue-level coarse-grained model designed to predict LCST-type phase behavior of proteins. Parametrized using both atomistic simulations and experimental data, Mpipi-T accounts for entropically driven protein phase separation that occurs upon heating. Accordingly, Mpipi-T predicts temperature-driven protein behavior quantitatively in both single- and multi-chain systems. Beyond its predictive capabilities, we demonstrate that Mpipi-T provides a framework for uncovering the molecular mechanisms underlying heat stress responses, offering new insights into how proteins sense and adapt to thermal changes in biological systems.
Collapse
Affiliation(s)
- Ananya Chakravarti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn–Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A. Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn–Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
R. Tejedor A, Aguirre Gonzalez A, Maristany MJ, Chew PY, Russell K, Ramirez J, Espinosa JR, Collepardo-Guevara R. Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates. ACS CENTRAL SCIENCE 2025; 11:302-321. [PMID: 40028356 PMCID: PMC11869137 DOI: 10.1021/acscentsci.4c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Biomolecular condensates composed of highly charged biomolecules, such as DNA, RNA, chromatin, and nucleic-acid binding proteins, are ubiquitous in the cell nucleus. The biophysical properties of these charge-rich condensates are largely regulated by electrostatic interactions. Residue-resolution coarse-grained models that describe solvent and ions implicitly are widely used to gain mechanistic insights into the biophysical properties of condensates, offering transferability, computational efficiency, and accurate predictions for multiple systems. However, their predictive accuracy diminishes for charge-rich condensates due to the implicit treatment of solvent and ions. Here, we present Mpipi-Recharged, a residue-resolution coarse-grained model that improves the description of charge effects in biomolecular condensates containing disordered proteins, multidomain proteins, and/or disordered single-stranded RNAs. Mpipi-Recharged introduces a pair-specific asymmetric Yukawa electrostatic potential, informed by atomistic simulations. We show that this asymmetric coarse-graining of electrostatic forces captures intricate effects, such as charge blockiness, stoichiometry variations in complex coacervates, and modulation of salt concentration, without requiring explicit solvation. Mpipi-Recharged provides excellent agreement with experiments in predicting the phase behavior of highly charged condensates. Overall, Mpipi-Recharged improves the computational tools available to investigate the physicochemical mechanisms regulating biomolecular condensates, enhancing the scope of computer simulations in this field.
Collapse
Affiliation(s)
- Andrés R. Tejedor
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anne Aguirre Gonzalez
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. Julia Maristany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Maxwell
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Pin Yu Chew
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kieran Russell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jorge Ramirez
- Department
of Chemical Engineering, Universidad Politécnica
de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jorge R. Espinosa
- Department
of Physical-Chemistry Universidad Complutense
de Madrid, Av. Complutense s/n, Madrid 28040, Spain
| | - Rosana Collepardo-Guevara
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Maxwell
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Genetics University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
8
|
Rekhi S, Mittal J. Amino Acid Transfer Free Energies Reveal Thermodynamic Driving Forces in Biomolecular Condensate Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.625774. [PMID: 39677697 PMCID: PMC11642748 DOI: 10.1101/2024.12.01.625774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The self-assembly of intrinsically disordered proteins into biomolecular condensates shows a dependence on the primary sequence of the protein, leading to sequence-dependent phase separation. Methods to investigate this sequence-dependent phase separation rely on effective residue-level interaction potentials that quantify the propensity for the residues to remain in the dilute phase versus the dense phase. The most direct measure of these effective potentials are the distribution coefficients of the different amino acids between the two phases, but due to the lack of availability of these coefficients, proxies, most notably hydropathy, have been used. However, recent work has demonstrated the limitations of the assumption of hydropathy-driven phase separation. In this work, we address this fundamental gap by calculating the transfer free energies associated with transferring each amino acid side chain analog from the dilute phase to the dense phase of a model biomolecular condensate. We uncover an interplay between favorable protein-mediated and unfavorable water-mediated contributions to the overall free energies of transfer. We further uncover an asymmetry between the contributions of positive and negative charges in the driving forces for condensate formation. The results presented in this work provide an explanation for several non-trivial trends observed in the literature and will aid in the interpretation of experiments aimed at elucidating the sequence-dependent driving forces underlying the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Wang C, Kilgore HR, Latham AP, Zhang B. Nonspecific Yet Selective Interactions Contribute to Small Molecule Condensate Binding. J Chem Theory Comput 2024; 20:10247-10258. [PMID: 39534915 DOI: 10.1021/acs.jctc.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates are essential in various cellular processes, and their misregulation has been demonstrated to underlie disease. Small molecules that modulate condensate stability and material properties offer promising therapeutic approaches, but mechanistic insights into their interactions with condensates remain largely lacking. We employ a multiscale approach to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. Systematic characterization of the ligand binding poses reveals that condensates can form diverse and heterogeneous chemical environments with one or multiple chains to bind small molecules. Unlike traditional protein-ligand interactions, these chemical environments are dominated by nonspecific hydrophobic interactions. Nevertheless, the chemical environments feature unique amino acid compositions and physicochemical properties that favor certain small molecules over others, resulting in varied ligand partitioning coefficients within condensates. Notably, different condensates share similar sets of chemical environments but at different populations. This population shift drives ligand selectivity toward specific condensates. Our approach can enhance the interpretation of experimental screening data and may assist in the rational design of small molecules targeting specific condensates.
Collapse
Affiliation(s)
- Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry R Kilgore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Zhang B, Wang C, Kilgore H, Latham A. Non-specific yet selective interactions contribute to small molecule condensate partitioning behavior. RESEARCH SQUARE 2024:rs.3.rs-4784242. [PMID: 39184067 PMCID: PMC11343289 DOI: 10.21203/rs.3.rs-4784242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biomolecular condensates are essential in various cellular processes, and their misregulation has been demonstrated to be underly disease. Small molecules that modulate condensate stability and material properties offer promising therapeutic approaches, but mechanistic insights into their interactions with condensates remain largely lacking. We employ a multiscale approach to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. Systematic characterization of the ligand binding poses reveals that condensates can form diverse and heterogeneous chemical environments with one or multiple chains to bind small molecules. Unlike traditional protein-ligand interactions, these chemical environments are dominated by non-specific hydrophobic interactions. Nevertheless, the chemical environments feature unique amino acid compositions and physicochemical properties that favor certain small molecules over others, resulting in varied ligand partitioning coefficients within condensates. Notably, different condensates share similar sets of chemical environments but at different populations. This population shift drives ligand selectivity towards specific condensates. Our approach can enhance the interpretation of experimental screening data and may assist in the rational design of small molecules targeting specific condensates.
Collapse
|
11
|
Liu S, Athreya A, Lao Z, Zhang B. From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. Annu Rev Biophys 2024; 53:221-245. [PMID: 38346246 PMCID: PMC11369498 DOI: 10.1146/annurev-biophys-030822-032650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Advait Athreya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
12
|
Latham AP, Zhu L, Sharon DA, Ye S, Willard AP, Zhang X, Zhang B. Microphase Separation Produces Interfacial Environment within Diblock Biomolecular Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.30.534967. [PMID: 37034777 PMCID: PMC10081284 DOI: 10.1101/2023.03.30.534967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, i.e., the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELP). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
13
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures. Biophys J 2024; 123:1342-1355. [PMID: 37408305 PMCID: PMC11163273 DOI: 10.1016/j.bpj.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Multiphasic architectures are found ubiquitously in biomolecular condensates and are thought to have important implications for the organization of multiple chemical reactions within the same compartment. Many of these multiphasic condensates contain RNA in addition to proteins. Here, we investigate the importance of different interactions in multiphasic condensates comprising two different proteins and RNA using computer simulations with a residue-resolution coarse-grained model of proteins and RNA. We find that in multilayered condensates containing RNA in both phases, protein-RNA interactions dominate, with aromatic residues and arginine forming the key stabilizing interactions. The total aromatic and arginine content of the two proteins must be appreciably different for distinct phases to form, and we show that this difference increases as the system is driven toward greater multiphasicity. Using the trends observed in the different interaction energies of this system, we demonstrate that we can also construct multilayered condensates with RNA preferentially concentrated in one phase. The "rules" identified can thus enable the design of synthetic multiphasic condensates to facilitate further study of their organization and function.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Physics, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Sood A, Schuette G, Zhang B. Dynamical phase transition in models that couple chromatin folding with histone modifications. Phys Rev E 2024; 109:054411. [PMID: 38907407 DOI: 10.1103/physreve.109.054411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2024] [Indexed: 06/24/2024]
Abstract
Genomic regions can acquire heritable epigenetic states through unique histone modifications, which lead to stable gene expression patterns without altering the underlying DNA sequence. However, the relationship between chromatin conformational dynamics and epigenetic stability is poorly understood. In this paper, we propose kinetic models to investigate the dynamic fluctuations of histone modifications and the spatial interactions between nucleosomes. Our model explicitly incorporates the influence of chemical modifications on the structural stability of chromatin and the contribution of chromatin contacts to the cooperative nature of chemical reactions. Through stochastic simulations and analytical theory, we have discovered distinct steady-state outcomes in different kinetic regimes, resembling a dynamical phase transition. Importantly, we have validated that the emergence of this transition, which occurs on biologically relevant timescales, is robust against variations in model design and parameters. Our findings suggest that the viscoelastic properties of chromatin and the timescale at which it transitions from a gel-like to a liquidlike state significantly impact dynamic processes that occur along the one-dimensional DNA sequence.
Collapse
|
15
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. eLife 2024; 12:RP90820. [PMID: 38592759 PMCID: PMC11003746 DOI: 10.7554/elife.90820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research LaboratoryWashingtonUnited States
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
16
|
Ye S, Latham AP, Tang Y, Hsiung CH, Chen J, Luo F, Liu Y, Zhang B, Zhang X. Micropolarity governs the structural organization of biomolecular condensates. Nat Chem Biol 2024; 20:443-451. [PMID: 37973891 PMCID: PMC10978266 DOI: 10.1038/s41589-023-01477-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Membraneless organelles within cells have unique microenvironments that play a critical role in their functions. However, how microenvironments of biomolecular condensates affect their structure and function remains unknown. In this study, we investigated the micropolarity and microviscosity of model biomolecular condensates by fluorescence lifetime imaging coupling with environmentally sensitive fluorophores. Using both in vitro and in cellulo systems, we demonstrated that sufficient micropolarity difference is key to forming multilayered condensates, where the shells present more polar microenvironments than the cores. Furthermore, micropolarity changes were shown to be accompanied by conversions of the layered structures. Decreased micropolarities of the granular components, accompanied by the increased micropolarities of the dense fibrillar components, result in the relocation of different nucleolus subcompartments in transcription-stalled conditions. Our results demonstrate the central role of the previously overlooked micropolarity in the regulation of structures and functions of membraneless organelles.
Collapse
Affiliation(s)
- Songtao Ye
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yuqi Tang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Junlin Chen
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Feng Luo
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
17
|
Unarta IC, Cao S, Goonetilleke EC, Niu J, Gellman SH, Huang X. Submillisecond Atomistic Molecular Dynamics Simulations Reveal Hydrogen Bond-Driven Diffusion of a Guest Peptide in Protein-RNA Condensate. J Phys Chem B 2024; 128:2347-2359. [PMID: 38416758 PMCID: PMC11057999 DOI: 10.1021/acs.jpcb.3c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics of molecules within a condensate remain poorly understood. We performed accumulated 564.7 μs all-atom molecular dynamics (MD) simulations (system size ∼200k atoms) of model condensates formed by a scaffold RNA oligomer and a scaffold peptide rich in arginine (Arg). These model condensates contained one of three possible guest peptides: the scaffold peptide itself or a variant in which six Arg residues were replaced by lysine (Lys) or asymmetric dimethyl arginine (ADMA). We found that the Arg-rich peptide can form the largest number of hydrogen bonds and bind the strongest to the scaffold RNA in the condensate, relative to the Lys- and ADMA-rich peptides. Our MD simulations also showed that the Arg-rich peptide diffused more slowly in the condensate relative to the other two guest peptides, which is consistent with a recent fluorescence microscopy study. There was no significant increase in the number of cation-π interactions between the Arg-rich peptide and the scaffold RNA compared to the Lys-rich and ADMA-rich peptides. Our results indicate that hydrogen bonds between the peptides and the RNA backbone, rather than cation-π interactions, play a major role in regulating peptide diffusion in the condensate.
Collapse
Affiliation(s)
- Ilona C. Unarta
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Siqin Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eshani C. Goonetilleke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
18
|
Li S, Zhang Y, Chen J. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochem Soc Trans 2024; 52:319-329. [PMID: 38348795 PMCID: PMC11742187 DOI: 10.1042/bst20230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Intrinsically disordered proteins (IDPs) are one of the major drivers behind the formation and characteristics of biomolecular condensates. Due to their inherent flexibility, the backbones of IDPs are significantly exposed, rendering them highly influential and susceptible to biomolecular phase separation. In densely packed condensates, exposed backbones have a heightened capacity to interact with neighboring protein chains, which might lead to strong coupling between the secondary structures and phase separation and further modulate the subsequent transitions of the condensates, such as aging and fibrillization. In this mini-review, we provide an overview of backbone-mediated interactions and secondary structures within biomolecular condensates to underscore the importance of protein backbones in phase separation. We further focus on recent advances in experimental techniques and molecular dynamics simulation methods for probing and exploring the roles of backbone interactions and secondary structures in biomolecular phase separation involving IDPs.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Kapoor U, Kim YC, Mittal J. Coarse-Grained Models to Study Protein-DNA Interactions and Liquid-Liquid Phase Separation. J Chem Theory Comput 2024; 20:1717-1731. [PMID: 37988476 PMCID: PMC10911113 DOI: 10.1021/acs.jctc.3c00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Recent advances in coarse-grained (CG) computational models for DNA have enabled molecular-level insights into the behavior of DNA in complex multiscale systems. However, most existing CG DNA models are not compatible with CG protein models, limiting their applications for emerging topics such as protein-nucleic acid assemblies. Here, we present a new computationally efficient CG DNA model. We first use experimental data to establish the model's ability to predict various aspects of DNA behavior, including melting thermodynamics and relevant local structural properties such as the major and minor grooves. We then employ an all-atom hydropathy scale to define nonbonded interactions between protein and DNA sites, to make our DNA model compatible with an existing CG protein model (HPS-Urry), which is extensively used to study protein phase separation, and show that our new model reasonably reproduces the experimental binding affinity for a prototypical protein-DNA system. To further demonstrate the capabilities of this new model, we simulate a full nucleosome with and without histone tails, on a microsecond time scale, generating conformational ensembles and provide molecular insights into the role of histone tails in influencing the liquid-liquid phase separation (LLPS) of HP1α proteins. We find that histone tails interact favorably with DNA, influencing the conformational ensemble of the DNA and antagonizing the contacts between HP1α and DNA, thus affecting the ability of DNA to promote LLPS of HP1α. These findings shed light on the complex molecular framework that fine-tunes the phase transition properties of heterochromatin proteins and contributes to heterochromatin regulation and function. Overall, the CG DNA model presented here is suitable to facilitate micrometer-scale studies with sub-nm resolution in many biological and engineering applications and can be used to investigate protein-DNA complexes, such as nucleosomes, or LLPS of proteins with DNA, enabling a mechanistic understanding of how molecular information may be propagated at the genome level.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 78743, United States
| | - Young C. Kim
- Center
for Materials Physics and Technology, Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Jeetain Mittal
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 78743, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 78743, United States
- Interdisciplinary
Graduate Program in Genetics in Genomics, Texas A&M University, College
Station, Texas 78743, United States
| |
Collapse
|
20
|
Zerze GH. Optimizing the Martini 3 Force Field Reveals the Effects of the Intricate Balance between Protein-Water Interaction Strength and Salt Concentration on Biomolecular Condensate Formation. J Chem Theory Comput 2024; 20:1646-1655. [PMID: 37043540 DOI: 10.1021/acs.jctc.2c01273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Condensation/dissolution has become a widely acknowledged biological macromolecular assembly phenomenon in subcellular compartmentalization. The MARTINI force field offers a coarse-grained protein model with a resolution that preserves molecular details with an explicit (CG) solvent. Despite its relatively higher resolution, it can still achieve condensate formation in a reasonable computing time with explicit solvent and ionic species. Therefore, it is highly desirable to tune this force field to be able to reproduce the experimentally observed properties of the condensate formation. In this work, we studied the condensate formation of the low-sequence complexity domain of fused in sarcoma protein using a MARTINI 3 force field by systematically modifying (increasing) the protein-water interaction strength and varying the salt concentration. We found that the condensate formation is sensitive both to the protein-water interaction strength and the presence of salt. While the unmodified MARTINI force field yields a complete collapse of proteins into one dense phase (i.e., no dilute phase), we reported a range of modified protein-water interaction strength that is capable of capturing the experimentally found transfer free energy between dense and dilute phases. We also found that the condensates lose their spherical shape upon the addition of salt, especially when the protein-water interactions are weak. Interchain amino acid contact map analysis showed one explanation for this observation: the protein-protein contact fraction reduces as salt is added to systems (when the protein-water interactions are weak), consistent with electrostatic screening effects. This reduction might be responsible for the condensates becoming nonspherical upon the addition of salt by reducing the need for minimizing the interfacial area. However, as the protein-water interactions become stronger to the extent that makes the transfer free energy agree well with experimentally observed transfer free energy, we found an increase in the protein-protein contact fraction upon the addition of salt, consistent with the salting-out effects. Therefore, we concluded that there is an intricate balance between screening effects and salting-out effects upon the addition of salt and this balance is highly sensitive to the strength of protein-water interactions.
Collapse
Affiliation(s)
- Gül H Zerze
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
21
|
Lin X, Zhang B. Explicit ion modeling predicts physicochemical interactions for chromatin organization. eLife 2024; 12:RP90073. [PMID: 38289342 PMCID: PMC10945522 DOI: 10.7554/elife.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
22
|
Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. J Am Chem Soc 2024; 146:342-357. [PMID: 38112495 PMCID: PMC10842759 DOI: 10.1021/jacs.3c09195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased β-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Airas J, Ding X, Zhang B. Transferable Implicit Solvation via Contrastive Learning of Graph Neural Networks. ACS CENTRAL SCIENCE 2023; 9:2286-2297. [PMID: 38161379 PMCID: PMC10755853 DOI: 10.1021/acscentsci.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Implicit solvent models are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. Efforts are underway to develop accurate and transferable implicit solvent models and coarse-grained (CG) force fields in general, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to the lack of analytical expressions for the PMF and algorithmic limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent the solvation free energy and potential contrasting for parameter optimization. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside of the training data. Our study offers valuable insights for deriving systematically improvable implicit solvent models and CG force fields from a bottom-up perspective.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| |
Collapse
|
24
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542535. [PMID: 37398008 PMCID: PMC10312469 DOI: 10.1101/2023.05.28.542535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M. Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
Lin X, Zhang B. Explicit Ion Modeling Predicts Physicochemical Interactions for Chromatin Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541030. [PMID: 37293007 PMCID: PMC10245791 DOI: 10.1101/2023.05.16.541030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Airas J, Ding X, Zhang B. Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556923. [PMID: 37745447 PMCID: PMC10515757 DOI: 10.1101/2023.09.08.556923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coarse-grained (CG) force fields are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. These simulations employ simplified models grouping atoms into interaction sites, enabling the study of complex biomolecular systems over biologically relevant timescales. Efforts are underway to develop accurate and transferable CG force fields, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to many-body effects, lack of analytical expressions for the PMF, and limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent CG force fields and potential contrasting for parameterization from atomistic simulation data. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside the training data. Our study offers valuable insights for building accurate coarse-grained models bottom-up.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. Biophys J 2023; 122:3425-3438. [PMID: 37496267 PMCID: PMC10502442 DOI: 10.1016/j.bpj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
28
|
Liu S, Wang C, Latham AP, Ding X, Zhang B. OpenABC enables flexible, simplified, and efficient GPU accelerated simulations of biomolecular condensates. PLoS Comput Biol 2023; 19:e1011442. [PMID: 37695778 PMCID: PMC10513381 DOI: 10.1371/journal.pcbi.1011442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/21/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
Biomolecular condensates are important structures in various cellular processes but are challenging to study using traditional experimental techniques. In silico simulations with residue-level coarse-grained models strike a balance between computational efficiency and chemical accuracy. They could offer valuable insights by connecting the emergent properties of these complex systems with molecular sequences. However, existing coarse-grained models often lack easy-to-follow tutorials and are implemented in software that is not optimal for condensate simulations. To address these issues, we introduce OpenABC, a software package that greatly simplifies the setup and execution of coarse-grained condensate simulations with multiple force fields using Python scripting. OpenABC seamlessly integrates with the OpenMM molecular dynamics engine, enabling efficient simulations with performance on a single GPU that rivals the speed achieved by hundreds of CPUs. We also provide tools that convert coarse-grained configurations to all-atom structures for atomistic simulations. We anticipate that OpenABC will significantly facilitate the adoption of in silico simulations by a broader community to investigate the structural and dynamical properties of condensates.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Zhang Y, Li S, Gong X, Chen J. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554378. [PMID: 37662293 PMCID: PMC10473686 DOI: 10.1101/2023.08.22.554378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate liquid-liquid phase separation (LLPS) that underlies the formation of membraneless organelles. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding sequence-specific phase separation of IDPs. However, the widely-used Cα-only models are severely limited in capturing the peptide nature of IDPs, including backbone-mediated interactions and effects of secondary structures, in LLPS. Here, we describe a hybrid resolution (HyRes) protein model for accurate description of the backbone and transient secondary structures in LLPS. With an atomistic backbone and coarse-grained side chains, HyRes accurately predicts the residue helical propensity and chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for direct simulation of spontaneous phase separation, and at the same time accurate enough to resolve the effects of single mutations. HyRes simulations also successfully predict increased beta-sheet formation in the condensate, consistent with available experimental data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate LLPS propensity. The simulations successfully recapitulate the effect of these mutants on the helicity and LLPS propensity of TDP-43 CR. Analyses reveal that the balance between backbone and sidechain-mediated interactions, but not helicity itself, actually determines LLPS propensity. We believe that the HyRes model represents an important advance in the molecular simulation of LLPS and will help elucidate the coupling between IDP transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
30
|
Tortora MMC, Brennan LD, Karpen G, Jost D. HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation. Proc Natl Acad Sci U S A 2023; 120:e2211855120. [PMID: 37549295 PMCID: PMC10438847 DOI: 10.1073/pnas.2211855120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/28/2023] [Indexed: 08/09/2023] Open
Abstract
The spatial segregation of pericentromeric heterochromatin (PCH) into distinct, membrane-less nuclear compartments involves the binding of Heterochromatin Protein 1 (HP1) to H3K9me2/3-rich genomic regions. While HP1 exhibits liquid-liquid phase separation properties in vitro, its mechanistic impact on the structure and dynamics of PCH condensate formation in vivo remains largely unresolved. Here, using a minimal theoretical framework, we systematically investigate the mutual coupling between self-interacting HP1-like molecules and the chromatin polymer. We reveal that the specific affinity of HP1 for H3K9me2/3 loci facilitates coacervation in nucleo and promotes the formation of stable PCH condensates at HP1 levels far below the concentration required to observe phase separation in purified protein assays in vitro. These heterotypic HP1-chromatin interactions give rise to a strong dependence of the nucleoplasmic HP1 density on HP1-H3K9me2/3 stoichiometry, consistent with the thermodynamics of multicomponent phase separation. The dynamical cross talk between HP1 and the viscoelastic chromatin scaffold also leads to anomalously slow equilibration kinetics, which strongly depend on the genomic distribution of H3K9me2/3 domains and result in the coexistence of multiple long-lived, microphase-separated PCH compartments. The morphology of these complex coacervates is further found to be governed by the dynamic establishment of the underlying H3K9me2/3 landscape, which may drive their increasingly abnormal, aspherical shapes during cell development. These findings compare favorably to 4D microscopy measurements of HP1 condensate formation in live Drosophila embryos and suggest a general quantitative model of PCH formation based on the interplay between HP1-based phase separation and chromatin polymer mechanics.
Collapse
Affiliation(s)
- Maxime M. C. Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007Lyon, France
| | - Lucy D. Brennan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Gary Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of BioEngineering and BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007Lyon, France
| |
Collapse
|
31
|
Saar KL, Qian D, Good LL, Morgunov AS, Collepardo-Guevara R, Best RB, Knowles TPJ. Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chem Rev 2023; 123:8988-9009. [PMID: 37171907 PMCID: PMC10375482 DOI: 10.1021/acs.chemrev.2c00586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 05/14/2023]
Abstract
Biomolecular condensation processes are increasingly recognized as a fundamental mechanism that living cells use to organize biomolecules in time and space. These processes can lead to the formation of membraneless organelles that enable cells to perform distinct biochemical processes in controlled local environments, thereby supplying them with an additional degree of spatial control relative to that achieved by membrane-bound organelles. This fundamental importance of biomolecular condensation has motivated a quest to discover and understand the molecular mechanisms and determinants that drive and control this process. Within this molecular viewpoint, computational methods can provide a unique angle to studying biomolecular condensation processes by contributing the resolution and scale that are challenging to reach with experimental techniques alone. In this Review, we focus on three types of dry-lab approaches: theoretical methods, physics-driven simulations and data-driven machine learning methods. We review recent progress in using these tools for probing biomolecular condensation across all three fields and outline the key advantages and limitations of each of the approaches. We further discuss some of the key outstanding challenges that we foresee the community addressing next in order to develop a more complete picture of the molecular driving forces behind biomolecular condensation processes and their biological roles in health and disease.
Collapse
Affiliation(s)
- Kadi L. Saar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Transition
Bio Ltd., Cambridge, United Kingdom
| | - Daoyuan Qian
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lydia L. Good
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Alexey S. Morgunov
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
32
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533194. [PMID: 36993500 PMCID: PMC10055272 DOI: 10.1101/2023.03.17.533194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Kapoor U, Kim YC, Mittal J. A coarse-grained DNA model to study protein-DNA interactions and liquid-liquid phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541513. [PMID: 37292850 PMCID: PMC10245785 DOI: 10.1101/2023.05.19.541513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in coarse-grained (CG) computational models for DNA have enabled molecular-level insights into the behavior of DNA in complex multiscale systems. However, most existing CG DNA models are not compatible with CG protein models, limiting their applications for emerging topics such as protein-nucleic acid assemblies. Here, we present a new computationally efficient CG DNA model. We first use experimental data to establish the model's ability to predict various aspects of DNA behavior, including melting thermodynamics and relevant local structural properties such as the major and minor grooves. We then employ an all-atom hydropathy scale to define non-bonded interactions between protein and DNA sites, to make our DNA model compatible with an existing CG protein model (HPS-Urry), that is extensively used to study protein phase separation, and show that our new model reasonably reproduces the experimental binding affinity for a prototypical protein-DNA system. To further demonstrate the capabilities of this new model, we simulate a full nucleosome with and without histone tails, on a microsecond timescale, generating conformational ensembles and provide molecular insights into the role of histone tails in influencing the liquid-liquid phase separation (LLPS) of HP1α proteins. We find that histone tails interact favorably with DNA, influencing the conformational ensemble of the DNA and antagonizing the contacts between HP1α and DNA, thus affecting the ability of DNA to promote LLPS of HP1α. These findings shed light on the complex molecular framework that fine-tunes the phase transition properties of heterochromatin proteins and contributes to heterochromatin regulation and function. Overall, the CG DNA model presented here is suitable to facilitate micron-scale studies with sub-nm resolution in many biological and engineering applications and can be used to investigate protein-DNA complexes, such as nucleosomes, or LLPS of proteins with DNA, enabling a mechanistic understanding of how molecular information may be propagated at the genome level.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 78743, United States
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, District of Columbia
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 78743, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 78743, United States
- Interdisciplinary Graduate Program in Genetics in Genomics, Texas A&M University, College Station, Texas 78743, United States
| |
Collapse
|
34
|
Liu S, Wang C, Latham A, Ding X, Zhang B. OpenABC Enables Flexible, Simplified, and Efficient GPU Accelerated Simulations of Biomolecular Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537533. [PMID: 37131742 PMCID: PMC10153273 DOI: 10.1101/2023.04.19.537533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biomolecular condensates are important structures in various cellular processes but are challenging to study using traditional experimental techniques. In silico simulations with residue-level coarse-grained models strike a balance between computational efficiency and chemical accuracy. They could offer valuable insights by connecting the emergent properties of these complex systems with molecular sequences. However, existing coarse-grained models often lack easy-to-follow tutorials and are implemented in software that is not optimal for condensate simulations. To address these issues, we introduce OpenABC, a software package that greatly simplifies the setup and execution of coarse-grained condensate simulations with multiple force fields using Python scripting. OpenABC seamlessly integrates with the OpenMM molecular dynamics engine, enabling efficient simulations with performances on a single GPU that rival the speed achieved by hundreds of CPUs. We also provide tools that convert coarse-grained configurations to all-atom structures for atomistic simulations. We anticipate that Open-ABC will significantly facilitate the adoption of in silico simulations by a broader community to investigate the structural and dynamical properties of condensates. Open-ABC is available at https://github.com/ZhangGroup-MITChemistry/OpenABC.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
35
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem Sci 2023; 14:1820-1836. [PMID: 36819870 PMCID: PMC9931050 DOI: 10.1039/d2sc05873a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Intracellular condensates are highly multi-component systems in which complex phase behaviour can ensue, including the formation of architectures comprising multiple immiscible condensed phases. Relying solely on physical intuition to manipulate such condensates is difficult because of the complexity of their composition, and systematically learning the underlying rules experimentally would be extremely costly. We address this challenge by developing a computational approach to design pairs of protein sequences that result in well-separated multilayered condensates and elucidate the molecular origins of these compartments. Our method couples a genetic algorithm to a residue-resolution coarse-grained protein model. We demonstrate that we can design protein partners to form multiphase condensates containing naturally occurring proteins, such as the low-complexity domain of hnRNPA1 and its mutants, and show how homo- and heterotypic interactions must differ between proteins to result in multiphasicity. We also show that in some cases the specific pattern of amino-acid residues plays an important role. Our findings have wide-ranging implications for understanding and controlling the organisation, functions and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Jerelle A Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
36
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 08/31/2023]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/13/2024]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
39
|
Latham AP, Zhang B. Molecular Determinants for the Layering and Coarsening of Biological Condensates. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e306. [PMID: 37065433 PMCID: PMC10101022 DOI: 10.1002/agt2.306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Many membraneless organelles, or biological condensates, form through phase separation, and play key roles in signal sensing and transcriptional regulation. While the functional importance of these condensates has inspired many studies to characterize their stability and spatial organization, the underlying principles that dictate these emergent properties are still being uncovered. In this review, we examine recent work on biological condensates, especially multicomponent systems. We focus on connecting molecular factors such as binding energy, valency, and stoichiometry with the interfacial tension, explaining the nontrivial interior organization in many condensates. We further discuss mechanisms that arrest condensate coalescence by lowering the surface tension or introducing kinetic barriers to stabilize the multidroplet state.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
40
|
Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022; 61:2443-2455. [PMID: 35802394 PMCID: PMC9669140 DOI: 10.1021/acs.biochem.2c00210] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of membraneless organelles, often termed "biological condensates", play an important role in the regulation of cellular processes such as gene transcription, translation, and protein quality control. On the basis of experimental and theoretical investigations, liquid-liquid phase separation (LLPS) has been proposed as a possible mechanism for the origin of biological condensates. LLPS requires multivalent macromolecules that template the formation of long-range, intermolecular interaction networks and results in the formation of condensates with defined composition and material properties. Multivalent interactions driving LLPS exhibit a wide range of modes from highly stereospecific to nonspecific and involve both folded and disordered regions. Multidomain proteins serve as suitable macromolecules for promoting phase separation and achieving disparate functions due to their potential for multivalent interactions and regulation. Here, we aim to highlight the influence of the domain architecture and interdomain interactions on the phase separation of multidomain protein condensates. First, the general principles underlying these interactions are illustrated on the basis of examples of multidomain proteins that are predominantly associated with nucleic acid binding and protein quality control and contain both folded and disordered regions. Next, the examples showcase how LLPS properties of folded and disordered regions can be leveraged to engineer multidomain constructs that form condensates with the desired assembly and functional properties. Finally, we highlight the need for improvements in coarse-grained computational models that can provide molecular-level insights into multidomain protein condensates in conjunction with experimental efforts.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | | | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
41
|
Abstract
Coarse-grained models have proven helpful for simulating complex systems over long time scales to provide molecular insights into various processes. Methodologies for systematic parametrization of the underlying energy function or force field that describes the interactions among different components of the system are of great interest for ensuring simulation accuracy. We present a new method, potential contrasting, to enable efficient learning of force fields that can accurately reproduce the conformational distribution produced with all-atom simulations. Potential contrasting generalizes the noise contrastive estimation method with umbrella sampling to better learn the complex energy landscape of molecular systems. When applied to the Trp-cage protein, we found that the technique produces force fields that thoroughly capture the thermodynamics of the folding process despite the use of only α-carbons in the coarse-grained model. We further showed that potential contrasting could be applied over large data sets that combine the conformational ensembles of many proteins to improve force field transferability. We anticipate potential contrasting as a powerful tool for building general-purpose coarse-grained force fields.
Collapse
Affiliation(s)
- Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Zhang Y, Liu X, Chen J. Toward Accurate Coarse-Grained Simulations of Disordered Proteins and Their Dynamic Interactions. J Chem Inf Model 2022; 62:4523-4536. [PMID: 36083825 PMCID: PMC9910785 DOI: 10.1021/acs.jcim.2c00974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular regulatory networks and are now recognized to often remain highly dynamic even in specific interactions and assemblies. Accurate description of these dynamic interactions is extremely challenging using atomistic simulations because of the prohibitive computational cost. Efficient coarse-grained approaches could offer an effective solution to overcome this bottleneck if they could provide an accurate description of key local and global properties of IDPs in both unbound and bound states. The recently developed hybrid-resolution (HyRes) protein model has been shown to be capable of providing a semiquantitative description of the secondary structure propensities of IDPs. Here, we show that greatly improved description of global structures and transient interactions can be achieved by introducing a solvent-accessible surface area-based implicit solvent term followed by reoptimization of effective interaction strengths. The new model, termed HyRes II, can semiquantitatively reproduce a wide range of local and global structural properties of a set of IDPs of various lengths and complexities. It can also distinguish the level of compaction between folded proteins and IDPs. In particular, applied to the disordered N-terminal transactivation domain (TAD) of tumor suppressor p53, HyRes II is able to recapitulate various nontrivial structural properties compared to experimental results, some of them to a level of accuracy that is almost comparable to results from atomistic explicit solvent simulations. Furthermore, we demonstrate that HyRes II can be used to simulate the dynamic interactions of TAD with the DNA-binding domain of p53, generating structural ensembles that are highly consistent with existing NMR data. We anticipate that HyRes II will provide an efficient and relatively reliable tool toward accurate coarse-grained simulations of dynamic protein interactions.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
43
|
Liu S, Lin X, Zhang B. Chromatin fiber breaks into clutches under tension and crowding. Nucleic Acids Res 2022; 50:9738-9747. [PMID: 36029149 PMCID: PMC9508854 DOI: 10.1093/nar/gkac725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
44
|
Abstract
The human genome is arranged in the cell nucleus nonrandomly, and phase separation has been proposed as an important driving force for genome organization. However, the cell nucleus is an active system, and the contribution of nonequilibrium activities to phase separation and genome structure and dynamics remains to be explored. We simulated the genome using an energy function parametrized with chromosome conformation capture (Hi-C) data with the presence of active, nondirectional forces that break the detailed balance. We found that active forces that may arise from transcription and chromatin remodeling can dramatically impact the spatial localization of heterochromatin. When applied to euchromatin, active forces can drive heterochromatin to the nuclear envelope and compete with passive interactions among heterochromatin that tend to pull them in opposite directions. Furthermore, active forces induce long-range spatial correlations among genomic loci beyond single chromosome territories. We further showed that the impact of active forces could be understood from the effective temperature defined as the fluctuation-dissipation ratio. Our study suggests that nonequilibrium activities can significantly impact genome structure and dynamics, producing unexpected collective phenomena.
Collapse
Affiliation(s)
- Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Kartik Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
45
|
Latham AP, Zhang B. On the stability and layered organization of protein-DNA condensates. Biophys J 2022; 121:1727-1737. [PMID: 35364104 PMCID: PMC9117872 DOI: 10.1016/j.bpj.2022.03.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Multi-component phase separation is emerging as a key mechanism for the formation of biological condensates that play essential roles in signal sensing and transcriptional regulation. The molecular factors that dictate these condensates' stability and spatial organization are not fully understood, and it remains challenging to predict their microstructures. Using a near-atomistic, chemically accurate force field, we studied the phase behavior of chromatin regulators that are crucial for heterochromatin organization and their interactions with DNA. Our computed phase diagrams recapitulated previous experimental findings on different proteins. They revealed a strong dependence of condensate stability on the protein-DNA mixing ratio as a result of balancing protein-protein interactions and charge neutralization. Notably, a layered organization was observed in condensates formed by mixing HP1, histone H1, and DNA. This layered organization may be of biological relevance, as it enables cooperative DNA packaging between the two chromatin regulators: histone H1 softens the DNA to facilitate the compaction induced by HP1 droplets. Our study supports near-atomistic models as a valuable tool for characterizing the structure and stability of biological condensates.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
46
|
Leicher R, Osunsade A, Chua GNL, Faulkner SC, Latham AP, Watters JW, Nguyen T, Beckwitt EC, Christodoulou-Rubalcava S, Young PG, Zhang B, David Y, Liu S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat Struct Mol Biol 2022; 29:463-471. [PMID: 35484234 PMCID: PMC9117509 DOI: 10.1038/s41594-022-00760-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
The H1 linker histone family is the most abundant group of eukaryotic chromatin-binding proteins. However, their contribution to chromosome structure and function remains incompletely understood. Here we use single-molecule fluorescence and force microscopy to directly visualize the behavior of H1 on various nucleic acid and nucleosome substrates. We observe that H1 coalesces around single-stranded DNA generated from tension-induced DNA duplex melting. Using a droplet fusion assay controlled by optical tweezers, we find that single-stranded nucleic acids mediate the formation of gel-like H1 droplets, whereas H1-double-stranded DNA and H1-nucleosome droplets are more liquid-like. Molecular dynamics simulations reveal that multivalent and transient engagement of H1 with unpaired DNA strands drives their enhanced phase separation. Using eGFP-tagged H1, we demonstrate that inducing single-stranded DNA accumulation in cells causes an increase in H1 puncta that are able to fuse. We further show that H1 and Replication Protein A occupy separate nuclear regions, but that H1 colocalizes with the replication factor Proliferating Cell Nuclear Antigen, particularly after DNA damage. Overall, our results provide a refined perspective on the diverse roles of H1 in genome organization and maintenance, and indicate its involvement at stalled replication forks.
Collapse
Affiliation(s)
- Rachel Leicher
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Adewola Osunsade
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Sarah C Faulkner
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Tuan Nguyen
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Emily C Beckwitt
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Paul G Young
- Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA.
- Tri-Institutional MD-PhD Program, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Tri-Institutional MD-PhD Program, New York, NY, USA.
| |
Collapse
|
47
|
Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022; 12:4390. [PMID: 35293386 PMCID: PMC8924231 DOI: 10.1038/s41598-022-08130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed by the process of liquid-liquid phase separation (LLPS) play diverse roles inside cells, from spatiotemporal compartmentalisation to speeding up chemical reactions. Upon maturation, the liquid-like properties of condensates, which underpin their functions, are gradually lost, eventually giving rise to solid-like states with potential pathological implications. Enhancement of inter-protein interactions is one of the main mechanisms suggested to trigger the formation of solid-like condensates. To gain a molecular-level understanding of how the accumulation of stronger interactions among proteins inside condensates affect the kinetic and thermodynamic properties of biomolecular condensates, and their shapes over time, we develop a tailored coarse-grained model of proteins that transition from establishing weak to stronger inter-protein interactions inside condensates. Our simulations reveal that the fast accumulation of strongly binding proteins during the nucleation and growth stages of condensate formation results in aspherical solid-like condensates. In contrast, when strong inter-protein interactions appear only after the equilibrium condensate has been formed, or when they accumulate slowly over time with respect to the time needed for droplets to fuse and grow, spherical solid-like droplets emerge. By conducting atomistic potential-of-mean-force simulations of NUP-98 peptides-prone to forming inter-protein [Formula: see text]-sheets-we observe that formation of inter-peptide [Formula: see text]-sheets increases the strength of the interactions consistently with the loss of liquid-like condensate properties we observe at the coarse-grained level. Overall, our work aids in elucidating fundamental molecular, kinetic, and thermodynamic mechanisms linking the rate of change in protein interaction strength to condensate shape and maturation during ageing.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
48
|
Latham AP, Zhang B. Unifying coarse-grained force fields for folded and disordered proteins. Curr Opin Struct Biol 2022; 72:63-70. [PMID: 34536913 PMCID: PMC9057422 DOI: 10.1016/j.sbi.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Liquid-liquid phase separation drives the formation of biological condensates that play essential roles in transcriptional regulation and signal sensing. Computational modeling could provide high-resolution structural characterizations of these condensates and help uncover physicochemical interactions that dictate their stability. However, many protein molecules involved in phase separation often contain multiple ordered domains connected with flexible, structureless linkers. Simulating such proteins necessitates force fields with consistent accuracy for both folded and disordered proteins. We provide a critical review of existing coarse-grained force fields for disordered proteins and highlight the challenges in their application to folded proteins. After discussing existing algorithms for force field parameterization, we propose an optimization strategy that should lead to computer models with improved transferability across protein types.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
49
|
Joseph JA, Reinhardt A, Aguirre A, Chew PY, Russell KO, Espinosa JR, Garaizar A, Collepardo-Guevara R. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. NATURE COMPUTATIONAL SCIENCE 2021; 1:732-743. [PMID: 35795820 PMCID: PMC7612994 DOI: 10.1038/s43588-021-00155-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
Various physics- and data-driven sequence-dependent protein coarse-grained models have been developed to study biomolecular phase separation and elucidate the dominant physicochemical driving forces. Here, we present Mpipi, a multiscale coarse-grained model that describes almost quantitatively the change in protein critical temperatures as a function of amino-acid sequence. The model is parameterised from both atomistic simulations and bioinformatics data and accounts for the dominant role of π-π and hybrid cation-π/π-π interactions and the much stronger attractive contacts established by arginines than lysines. We provide a comprehensive set of benchmarks for Mpipi and seven other residue-level coarse-grained models against experimental radii of gyration and quantitative in-vitro phase diagrams; Mpipi predictions agree well with experiment on both fronts. Moreover, it can account for protein-RNA interactions, correctly predicts the multiphase behaviour of a charge-matched poly-arginine/poly-lysine/RNA system, and recapitulates experimental LLPS trends for sequence mutations on FUS, DDX4 and LAF-1 proteins.
Collapse
Affiliation(s)
- Jerelle A. Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Anne Aguirre
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kieran O. Russell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Jorge R. Espinosa
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Adiran Garaizar
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|
50
|
Sanchez-Burgos I, Joseph JA, Collepardo-Guevara R, Espinosa JR. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Sci Rep 2021; 11:15241. [PMID: 34315935 PMCID: PMC8316449 DOI: 10.1038/s41598-021-94309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Biomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants-i.e., that significantly reduce the droplet surface tension-can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein 'multidroplet size-conserved' scenario'), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. The multidroplet size-conserved scenario spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells-shedding light on the roles of protein connectivity, binding affinity, and droplet composition in this process.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|