1
|
Dluhosch D, Kersten LS, Schott-Verdugo S, Hoppen C, Schwarten M, Willbold D, Gohlke H, Groth G. Structure and dimerization properties of the plant-specific copper chaperone CCH. Sci Rep 2024; 14:19099. [PMID: 39154065 PMCID: PMC11330527 DOI: 10.1038/s41598-024-69532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Copper chaperones of the ATX1 family are found in a wide range of organisms where these essential soluble carriers strictly control the transport of monovalent copper across the cytoplasm to various targets in diverse cellular compartments thereby preventing detrimental radical formation catalyzed by the free metal ion. Notably, the ATX1 family in plants contains two distinct forms of the cellular copper carrier. In addition to ATX1 having orthologs in other species, they also contain the copper chaperone CCH. The latter features an extra C-terminal extension whose function is still unknown. The secondary structure of this extension was predicted to be disordered in previous studies, although this has not been experimentally confirmed. Solution NMR studies on purified CCH presented in this study disclose that this region is intrinsically disordered regardless of the chaperone's copper loading state. Further biophysical analyses of the purified metallochaperone provide evidence that the C-terminal extension stabilizes chaperone dimerization in the copper-free and copper-bound states. A variant of CCH lacking the C-terminal extension, termed CCHΔ, shows weaker dimerization but similar copper binding. Computational studies further corroborate the stabilizing role of the C-terminal extension in chaperone dimerization and identify key residues that are vital to maintaining dimer stability.
Collapse
Affiliation(s)
- Dominik Dluhosch
- Institute of Biochemical Plant Physiology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa Sophie Kersten
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Institute of Bio- and Geosciences: Bioinformatics (IBG-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Claudia Hoppen
- Institute of Biochemical Plant Physiology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Bio- and Geosciences: Bioinformatics (IBG-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
Shankar SS, Banarjee R, Jathar SM, Rajesh S, Ramasamy S, Kulkarni MJ. De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants. J Biomol Struct Dyn 2024; 42:4522-4536. [PMID: 37288801 DOI: 10.1080/07391102.2023.2220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Shiva Shankar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Swaraj M Jathar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sureshkumar Ramasamy
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Yakici N, Kreins AY, Catak MC, Babayeva R, Erman B, Kenney H, Gungor HE, Cea PA, Kawai T, Bosticardo M, Delmonte OM, Adams S, Fan YT, Pala F, Turkyilmaz A, Howley E, Worth A, Kot H, Sefer AP, Kara A, Bulutoglu A, Bilgic-Eltan S, Altunbas MY, Bayram Catak F, Karakus IS, Karatay E, Tekeoglu SD, Eser M, Albayrak D, Citli S, Kiykim A, Karakoc-Aydiner E, Ozen A, Ghosh S, Gohlke H, Orhan F, Notarangelo LD, Davies EG, Baris S. Expanding the clinical and immunological phenotypes of PAX1-deficient SCID and CID patients. Clin Immunol 2023; 255:109757. [PMID: 37689091 PMCID: PMC10958138 DOI: 10.1016/j.clim.2023.109757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment.
Collapse
Affiliation(s)
- Nalan Yakici
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Alexandra Y Kreins
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom; Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey; Can Sucak, Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey
| | - Heather Kenney
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Hatice Eke Gungor
- Division of Pediatric Allergy and Immunology, Erciyes City Hospital, Turkey
| | - Pablo A Cea
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Tomoki Kawai
- Shizuoka Children's Hospital, Shizuoka, Department of Allergy and Clinical Immunology, Japan
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Ottavia Maria Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Yu-Tong Fan
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Evey Howley
- Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Hakan Kot
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic-Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Feyza Bayram Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Emrah Karatay
- Department of Radiology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Sidem Didar Tekeoglu
- Can Sucak, Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey; Department of Pediatric Immunology, Hacettepe University, Ankara, Turkey
| | - Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Davut Albayrak
- Department of Pediatrics, Division of Pediatric Hematology, Medicalpark Hospital, Samsun, Turkey
| | - Senol Citli
- Department of Medical Genetics, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ayca Kiykim
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sujal Ghosh
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fazil Orhan
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - E Graham Davies
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom; Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
6
|
Mulnaes D, Schott-Verdugo S, Koenig F, Gohlke H. TopProperty: Robust Metaprediction of Transmembrane and Globular Protein Features Using Deep Neural Networks. J Chem Theory Comput 2021; 17:7281-7289. [PMID: 34663069 DOI: 10.1021/acs.jctc.1c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transmembrane proteins (TMPs) are critical components of cellular life. However, due to experimental challenges, the number of experimentally resolved TMP structures is severely underrepresented in databases compared to their cellular abundance. Prediction of (per-residue) features such as transmembrane topology, membrane exposure, secondary structure, and solvent accessibility can be a useful starting point for experimental design or protein structure prediction but often requires different computational tools for different features or types of proteins. We present TopProperty, a metapredictor that predicts all of these features for TMPs or globular proteins. TopProperty is trained on datasets without bias toward a high number of sequence homologs, and the predictions are significantly better than the evaluated state-of-the-art primary predictors on all quality metrics. TopProperty eliminates the need for protein type- or feature-tailored tools, specifically for TMPs. TopProperty is freely available as a web server and standalone at https://cpclab.uni-duesseldorf.de/topsuite/.
Collapse
Affiliation(s)
- Daniel Mulnaes
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Stephan Schott-Verdugo
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52425, Germany
| | - Filip Koenig
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52425, Germany
| |
Collapse
|