1
|
Ziems KM, Kjellgren ER, Sauer SPA, Kongsted J, Coriani S. Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers. Chem Sci 2025:d4sc05839a. [PMID: 39926708 PMCID: PMC11800139 DOI: 10.1039/d4sc05839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
The promise of quantum computing to circumvent the exponential scaling of quantum chemistry has sparked a race to develop chemistry algorithms for quantum architecture. However, most works neglect the quantum-inherent shot noise, let alone the effect of current noisy devices. Here, we present a comprehensive study of quantum linear response (qLR) theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers and present-day near-term quantum hardware. This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm, proposes an Ansatz-based error mitigation technique, and reveals the significant impact of Pauli saving in reducing measurement costs and noise in subspace methods. Our hardware results using up to cc-pVTZ basis set serve as proof of principle for obtaining absorption spectra on quantum hardware in a general approach with the accuracy of classical multi-configurational methods. Importantly, our results exemplify that substantial improvements in hardware error rates and measurement speed are necessary to lift quantum computational chemistry from proof of concept to an actual impact in the field.
Collapse
Affiliation(s)
- Karl Michael Ziems
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 DK-2800 Kongens Lyngby Denmark
- School of Chemistry, University of Southampton, Highfield Southampton SO17 1BJ UK
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 DK-5230 Odense Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen DK-2100 Copenhagen Ø Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 DK-5230 Odense Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 DK-2800 Kongens Lyngby Denmark
| |
Collapse
|
2
|
Kjellgren ER, Reinholdt P, Ziems KM, Sauer SPA, Coriani S, Kongsted J. Divergences in classical and quantum linear response and equation of motion formulations. J Chem Phys 2024; 161:124112. [PMID: 39319646 DOI: 10.1063/5.0225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Calculating molecular properties using quantum devices can be performed through the quantum linear response (qLR) or, equivalently, the quantum equation of motion (qEOM) formulations. Different parameterizations of qLR and qEOM are available, namely naïve, projected, self-consistent, and state-transfer. In the naïve and projected parameterizations, the metric is not the identity, and we show that it depends on redundant orbital rotations. This dependency may lead to divergences in the excitation energies for certain choices of the redundant orbital rotation parameters in an idealized noiseless setting. Furthermore, this leads to a significant variance when calculations include statistical noise from finite quantum sampling.
Collapse
Affiliation(s)
- Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Karl Michael Ziems
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Sonia Coriani
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
3
|
Jensen PWK, Kjellgren ER, Reinholdt P, Ziems KM, Coriani S, Kongsted J, Sauer SPA. Quantum Equation of Motion with Orbital Optimization for Computing Molecular Properties in Near-Term Quantum Computing. J Chem Theory Comput 2024; 20:3613-3625. [PMID: 38701352 DOI: 10.1021/acs.jctc.4c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Determining the properties of molecules and materials is one of the premier applications of quantum computing. A major question in the field is how to use imperfect near-term quantum computers to solve problems of practical value. Inspired by the recently developed variants of the quantum counterpart of the equation-of-motion (qEOM) approach and the orbital-optimized variational quantum eigensolver (oo-VQE), we present a quantum algorithm (oo-VQE-qEOM) for the calculation of molecular properties by computing expectation values on a quantum computer. We perform noise-free quantum simulations of BeH2 in the series of STO-3G/6-31G/6-31G* basis sets and of H4 and H2O in 6-31G using an active space of four electrons and four spatial orbitals (8 qubits) to evaluate excitation energies, electronic absorption, and, for twisted H4, circular dichroism spectra. We demonstrate that the proposed algorithm can reproduce the results of conventional classical CASSCF calculations for these molecular systems.
Collapse
Affiliation(s)
- Phillip W K Jensen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Karl Michael Ziems
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Hassan M, Pavošević F, Wang DS, Flick J. Simulating Polaritonic Ground States on Noisy Quantum Devices. J Phys Chem Lett 2024; 15:1373-1381. [PMID: 38287217 DOI: 10.1021/acs.jpclett.3c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The recent advent of quantum algorithms for noisy quantum devices offers a new route toward simulating strong light-matter interactions of molecules in optical cavities for polaritonic chemistry. In this work, we introduce a general framework for simulating electron-photon-coupled systems on small, noisy quantum devices. This method is based on the variational quantum eigensolver (VQE) with the polaritonic unitary coupled cluster (PUCC) ansatz. To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods, such as electron-photon parity, and use recently developed error mitigation schemes, such as the reference zero-noise extrapolation method. We explore the robustness of the VQE-PUCC approach across a diverse set of regimes for the bond length, cavity frequency, and coupling strength of the H2 molecule in an optical cavity. To quantify the performance, we measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number, an experimentally accessible general indicator of electron-photon correlation.
Collapse
Affiliation(s)
- Mohammad Hassan
- Department of Physics, City College of New York, New York, New York 10031, United States
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
| | | | - Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Department of Physics, City College of New York, New York, New York 10031, United States
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
5
|
Matoušek M, Pernal K, Pavošević F, Veis L. Variational Quantum Eigensolver Boosted by Adiabatic Connection. J Phys Chem A 2024; 128:687-698. [PMID: 38214999 PMCID: PMC10823474 DOI: 10.1021/acs.jpca.3c07590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
In this work, we integrate the variational quantum eigensolver (VQE) with the adiabatic connection (AC) method for efficient simulations of chemical problems on near-term quantum computers. Orbital-optimized VQE methods are employed to capture the strong correlation within an active space, and classical AC corrections recover the dynamical correlation effects comprising electrons outside of the active space. On two challenging strongly correlated problems, namely, the dissociation of N2 and the electronic structure of the tetramethyleneethane biradical, we show that the combined VQE-AC approach enhances the performance of VQE dramatically. Moreover, since the AC corrections do not bring any additional requirements on quantum resources or measurements, they can actually boost the VQE algorithms. Our work paves the way toward quantum simulations of real-life problems on near-term quantum computers.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | | | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
6
|
Nykänen A, Miller A, Talarico W, Knecht S, Kovyrshin A, Skogh M, Tornberg L, Broo A, Mensa S, Symons BCB, Sahin E, Crain J, Tavernelli I, Pavošević F. Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals. J Chem Theory Comput 2023; 19:9269-9277. [PMID: 38081802 DOI: 10.1021/acs.jctc.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.
Collapse
Affiliation(s)
- Anton Nykänen
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
| | - Aaron Miller
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- School of Physics, Trinity College Dublin, College Green Dublin 2, Ireland
| | - Walter Talarico
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- Department of Applied Physics, QTF Centre of Excellence, Center for Quantum Engineering, Aalto University School of Science, Aalto FIN-00076, Finland
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- ETH Zürich, Department of Chemistry and Applied Life Sciences Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Arseny Kovyrshin
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Mårten Skogh
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Lars Tornberg
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Anders Broo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Stefano Mensa
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | | | - Emre Sahin
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | - Jason Crain
- IBM Research Europe, Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | | | | |
Collapse
|
7
|
Pavošević F, Smith RL, Rubio A. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J Phys Chem A 2023; 127:10184-10188. [PMID: 37992280 DOI: 10.1021/acs.jpca.3c06285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Click chemistry, which refers to chemical reactions that are fast and selective with high product yields, has become a powerful approach in organic synthesis and chemical biology. Due to the cytotoxicity of the transition metals employed in click chemistry reactions, a search for novel metal-free alternatives continues. Herein, we demonstrate that an optical cavity can be utilized as a metal-free alternative in the click chemistry cycloaddition reaction between cyanoacetylene and formylazide using the quantum electrodynamics coupled cluster method. We show that by changing the molecular orientation with respect to the polarization of the cavity mode(s), the reaction can be selectively catalyzed to form a major 1,4-disubstituted or 1,5-disubstituted product. This work highlights that a cavity has the same effect on the investigated cycloaddition as the transition metal catalysts traditionally employed in click chemistry reactions. We expect our findings to further stimulate research on cavity-assisted click chemistry reactions.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Robert L Smith
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
8
|
Culpitt T, Tellgren EI, Pavošević F. Unitary coupled-cluster for quantum computation of molecular properties in a strong magnetic field. J Chem Phys 2023; 159:204101. [PMID: 37991157 DOI: 10.1063/5.0177417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
In truncated coupled-cluster (CC) theories, non-variational and/or generally complex ground-state energies can occur. This is due to the non-Hermitian nature of the similarity transformed Hamiltonian matrix in combination with CC truncation. For chemical problems that deal with real-valued Hamiltonian matrices, complex CC energies rarely occur. However, for complex-valued Hamiltonian matrices, such as those that arise in the presence of strong magnetic fields, complex CC energies can be regularly observed unless certain symmetry conditions are fulfilled. Therefore, in the presence of magnetic fields, it is desirable to pursue CC methods that are guaranteed to give upper-bound, real-valued energies. In this work, we present the first application of unitary CC to chemical systems in a strong magnetic field. This is achieved utilizing the variational quantum eigensolver algorithm applied to the unitary coupled-cluster singles and doubles (UCCSD) method. We benchmark the method on the H2 molecule in a strong magnetic field and then calculate UCCSD energies for the H4 molecule as a function of both geometry and field angle. We show that while standard CCSD can yield generally complex energies that are not an upper-bound to the true energy, UCCSD always results in variational and real-valued energies. We also show that the imaginary components of the CCSD energy are largest in the strongly correlated region. Last, the UCCSD calculations capture a large percentage of the correlation energy.
Collapse
Affiliation(s)
- Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | | |
Collapse
|
9
|
Feldmann R, Baiardi A, Reiher M. Symmetry-Projected Nuclear-Electronic Hartree-Fock: Eliminating Rotational Energy Contamination. J Phys Chem A 2023; 127:8943-8954. [PMID: 37831620 PMCID: PMC10614303 DOI: 10.1021/acs.jpca.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Indexed: 10/15/2023]
Abstract
We present a symmetry projection technique for enforcing rotational and parity symmetries in nuclear-electronic Hartree-Fock wave functions, which treat electrons and nuclei on equal footing. The molecular Hamiltonian obeys rotational and parity inversion symmetries, which are, however, broken by expanding in Gaussian basis sets that are fixed in space. We generate a trial wave function with the correct symmetry properties by projecting the wave function onto representations of the three-dimensional rotation group, i.e., the special orthogonal group in three dimensions SO(3). As a consequence, the wave function becomes an eigenfunction of the angular momentum operator which (i) eliminates the contamination of the ground-state wave function by highly excited rotational states arising from the broken rotational symmetry and (ii) enables the targeting of specific rotational states of the molecule. We demonstrate the efficiency of the symmetry projection technique by calculating the energies of the low-lying rotational states of the H2 and H3+ molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Markus Reiher
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
10
|
Pavošević F, Tavernelli I, Rubio A. Spin-Flip Unitary Coupled Cluster Method: Toward Accurate Description of Strong Electron Correlation on Quantum Computers. J Phys Chem Lett 2023; 14:7876-7882. [PMID: 37639229 DOI: 10.1021/acs.jpclett.3c01935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Quantum computers have emerged as a promising platform to simulate strong electron correlation that is crucial to catalysis and photochemistry. However, owing to the choice of a trial wave function employed in the variational quantum eigensolver (VQE) algorithm, accurate simulation is restricted to certain classes of correlated phenomena. Herein, we combine the spin-flip (SF) formalism with the unitary coupled cluster with singles and doubles (UCCSD) method via the quantum equation-of-motion (qEOM) approach to allow for an efficient simulation of a large family of strongly correlated problems. We show that the developed qEOM-SF-UCCSD/VQE method outperforms its UCCSD/VQE counterpart for simulation of the cis-trans isomerization of ethylene, and the automerization of cyclobutadiene and the predicted qEOM-SF-UCCSD/VQE barrier heights are in a good agreement with the experimentally determined values. The developments presented herein will further stimulate the investigation of this approach for simulations of other types of correlated/entangled phenomena on quantum computers.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Ave., New York, New York 10010, United States
| | | | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Ave., New York, New York 10010, United States
- Center for Free-Electron Laser Science and Department of Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
11
|
Kim Y, Krylov AI. Two Algorithms for Excited-State Quantum Solvers: Theory and Application to EOM-UCCSD. J Phys Chem A 2023; 127:6552-6566. [PMID: 37505075 DOI: 10.1021/acs.jpca.3c02480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Near-term quantum devices promise to revolutionize quantum chemistry, but simulations using the current noisy intermediate-scale quantum (NISQ) devices are not practical due to their high susceptibility to errors. This motivated the design of NISQ algorithms leveraging classical and quantum resources. While several developments have shown promising results for ground-state simulations, extending the algorithms to excited states remains challenging. This paper presents two cost-efficient excited-state algorithms inspired by the classical Davidson algorithm. We implemented the Davidson method into the quantum self-consistent equation-of-motion unitary coupled-cluster (q-sc-EOM-UCC) excited-state method adapted for quantum hardware. The circuit strategies for generating desired excited states are discussed, implemented, and tested. We demonstrate the performance and accuracy of the proposed algorithms (q-sc-EOM-UCC/Davidson and its variational variant) by simulations of H2, H4, LiH, and H2O molecules. Similar to the classical Davidson scheme, q-sc-EOM-UCC/Davidson algorithms are capable of targeting a small number of excited states of the desired character.
Collapse
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
12
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
13
|
Pavošević F, Smith RL, Rubio A. Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations. Nat Commun 2023; 14:2766. [PMID: 37179341 PMCID: PMC10183045 DOI: 10.1038/s41467-023-38474-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Achieving control over chemical reaction's rate and stereoselectivity realizes one of the Holy Grails in chemistry that can revolutionize chemical and pharmaceutical industries. Strong light-matter interaction in optical or nanoplasmonic cavities might provide the knob to reach such control. In this work, we demonstrate the catalytic and selectivity control of an optical cavity for two selected Diels-Alder cycloaddition reactions using the quantum electrodynamics coupled cluster (QED-CC) method. Herein, we find that by changing the molecular orientation with respect to the polarization of the cavity mode the reactions can be significantly inhibited or selectively enhanced to produce major endo or exo products on demand. This work highlights the potential of utilizing quantum vacuum fluctuations of an optical cavity to modulate the rate of Diels-Alder cycloaddition reactions and to achieve stereoselectivity in a practical and non-intrusive way. We expect that the present findings will be applicable to a larger set of relevant reactions, including the click chemical reactions.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010, NY, USA.
| | - Robert L Smith
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010, NY, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010, NY, USA.
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco (UPV/EHU), Av. Tolosa 72, 20018, San Sebastian, Spain.
| |
Collapse
|
14
|
Feldmann R, Baiardi A, Reiher M. Second-Order Self-Consistent Field Algorithms: From Classical to Quantum Nuclei. J Chem Theory Comput 2023; 19:856-873. [PMID: 36701300 DOI: 10.1021/acs.jctc.2c01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work presents a general framework for deriving exact and approximate Newton self-consistent field (SCF) orbital optimization algorithms by leveraging concepts borrowed from differential geometry. Within this framework, we extend the augmented Roothaan-Hall (ARH) algorithm to unrestricted electronic and nuclear-electronic calculations. We demonstrate that ARH yields an excellent compromise between stability and computational cost for SCF problems that are hard to converge with conventional first-order optimization strategies. In the electronic case, we show that ARH overcomes the slow convergence of orbitals in strongly correlated molecules with the example of several iron-sulfur clusters. For nuclear-electronic calculations, ARH significantly enhances the convergence already for small molecules, as demonstrated for a series of protonated water clusters.
Collapse
Affiliation(s)
- Robin Feldmann
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Pavosevic F, Hammes-Schiffer S. Triple electron-electron-proton excitations and second-order approximations in nuclear-electronic orbital coupled cluster methods. J Chem Phys 2022; 157:074104. [DOI: 10.1063/5.0106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accurate description of nuclear quantum effects, such as zero-point energy, is important for modeling a wide range of chemical and biological processes. Within the nuclear-electronic orbital (NEO) approach, such effects are incorporated in a computationally efficient way by treating electrons and select nuclei, typically protons, quantum mechanically with molecular orbital techniques. Herein, we implement and test a NEO coupled cluster method that explicitly includes the triple electron-proton excitations, where two electrons and one proton are excited simultaneously. Our calculations show that this NEO-CCSD(eep) method provides highly accurate proton densities and proton affinities, outperforming any previously studied NEO method. These examples highlight the importance of the triple electron-electron-proton excitations for an accurate description of nuclear quantum effects. Additionally, we also implement and test the second-order approximate coupled cluster with singles and doubles (NEO-CC2) method, as well as its scaled-opposite-spin (SOS) versions. The NEO-SOS$'$-CC2 method, which scales the electron-proton correlation energy as well as the opposite-spin and same-spin components of the electron-electron correlation energy, achieves nearly the same accuracy as the NEO-CCSD(eep) method for the properties studied. Because of its low computational cost, this method will enable a wide range of chemical and photochemical applications for large molecular systems. This work sets the stage for a wide range of developments and applications within the NEO framework.
Collapse
|
16
|
Pavosevic F, Rubio A. Wavefunction embedding for molecular polaritons. J Chem Phys 2022; 157:094101. [DOI: 10.1063/5.0095552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polaritonic chemistry relies on the strong light-matter interaction phenomena for altering the chemical reaction rates inside optical cavities. To explain and to understand these processes, the development of reliable theoretical models is essential. While computationally efficient quantum electrodynamics self-consistent field (QED-SCF) methods, such as quantum electrodynamics density functional theory (QEDFT) needs accurate functionals, quantum electrodynamics coupled cluster (QED-CC) methods provide a systematic increase in accuracy but at much greater cost. To overcome this computational bottleneck, herein we introduce and develop the QED-CC-in-QED-SCF projection-based embedding method that inherits all the favorable properties from the two worlds, computational efficiency and accuracy. The performance of the embedding method is assessed by studying some prototypical but relevant reactions, such as methyl transfer reaction, proton transfer reaction, as well as protonation reaction in a complex environment. The results obtained with the new embedding method are in excellent agreement with more expensive QED-CC results. The analysis performed on these reactions indicate that the electron-photon correlation effects are local in nature and that only a small region should be treated at the QED-CC level for capturing important effects due to cavity. This work sets the stage for future developments of polaritonic quantum chemistry methods and it will serve as a guideline for development of other polaritonic embedding models.
Collapse
Affiliation(s)
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Germany
| |
Collapse
|
17
|
Hirai H, Horiba T, Shirai S, Kanno K, Omiya K, Nakagawa YO, Koh S. Molecular Structure Optimization Based on Electrons-Nuclei Quantum Dynamics Computation. ACS OMEGA 2022; 7:19784-19793. [PMID: 35722014 PMCID: PMC9202041 DOI: 10.1021/acsomega.2c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A new concept of the molecular structure optimization method based on quantum dynamics computations is presented. Nuclei are treated as quantum mechanical particles, as are electrons, and the many-body wave function of the system is optimized by the imaginary time evolution method. The numerical demonstrations with a two-dimensional H2 + system and a H-C-N system exemplify two possible advantages of our proposed method: (1) the optimized nuclear positions can be specified with a small number of observations (quantum measurements) and (2) the global minimum structure of nuclei can be obtained without starting from any sophisticated initial structure and getting stuck in the local minima. This method is considered to be suitable for quantum computers, the development of which will realize its application as a powerful method.
Collapse
Affiliation(s)
- Hirotoshi Hirai
- Toyota
Central R&D Laboratories., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Takahiro Horiba
- Toyota
Central R&D Laboratories., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Soichi Shirai
- Toyota
Central R&D Laboratories., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Keita Kanno
- QunaSys
Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| | - Keita Omiya
- QunaSys
Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| | - Yuya O. Nakagawa
- QunaSys
Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| | - Sho Koh
- QunaSys
Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| |
Collapse
|
18
|
Liu J, Matthews DA, Cheng L. Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme: Efficient Implementation, Benchmark Study, and Formulation of an Extended Version. J Chem Theory Comput 2022; 18:2281-2291. [PMID: 35312299 DOI: 10.1021/acs.jctc.1c01210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient implementation of the quadratic unitary coupled-cluster singles and doubles (qUCCSD) scheme for calculations of electronic ground and excited states using an unrestricted molecular spin-orbital formulation and an efficient tensor contraction library is reported. The accuracy of the qUCCSD scheme and the efficiency of the present implementation are demonstrated using extensive benchmark calculations of excitation energies and an application to S0 → S1 vertical excitation energies for cis- and trans-4a,4b-dihydrotriphenylene. The qUCCSD scheme has been shown to provide improved excitation energies compared with the UCC3 scheme formulated based on perturbation theory. A UCC truncation scheme that can provide excitation energies correct through the fourth order is also presented to further improve the accuracy of the qUCCSD scheme.
Collapse
Affiliation(s)
- Junzi Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Pavošević F, Hammes-Schiffer S, Rubio A, Flick J. Cavity-Modulated Proton Transfer Reactions. J Am Chem Soc 2022; 144:4995-5002. [PMID: 35271261 DOI: 10.1021/jacs.1c13201] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proton transfer is ubiquitous in many fundamental chemical and biological processes, and the ability to modulate and control the proton transfer rate would have a major impact on numerous quantum technological advances. One possibility to modulate the reaction rate of proton transfer processes is given by exploiting the strong light-matter coupling of chemical systems inside optical or nanoplasmonic cavities. In this work, we investigate the proton transfer reactions in the prototype malonaldehyde and Z-3-amino-propenal (aminopropenal) molecules using different quantum electrodynamics methods, in particular, quantum electrodynamics coupled cluster theory and quantum electrodynamical density functional theory. Depending on the cavity mode polarization direction, we show that the optical cavity can increase the reaction energy barrier by 10-20% or decrease the reaction barrier by ∼5%. By using first-principles methods, this work establishes strong light-matter coupling as a viable and practical route to alter and catalyze proton transfer reactions.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, 10010 New York, New York, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, 06520 New Haven, Connecticut, United States
| | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, 10010 New York, New York, United States.,Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.,Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility, Universidad del País Vasco, Av. Tolosa 72, 20018 San Sebastian, Spain
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, 10010 New York, New York, United States
| |
Collapse
|
20
|
Anand A, Schleich P, Alperin-Lea S, Jensen PWK, Sim S, Díaz-Tinoco M, Kottmann JS, Degroote M, Izmaylov AF, Aspuru-Guzik A. A quantum computing view on unitary coupled cluster theory. Chem Soc Rev 2022; 51:1659-1684. [PMID: 35166276 DOI: 10.1039/d1cs00932j] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field.
Collapse
Affiliation(s)
- Abhinav Anand
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | - Philipp Schleich
- Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada. .,Applied and Computational Mathematics, Department of Mathematics, RWTH Aachen University, Aachen, Germany.,Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Sumner Alperin-Lea
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | - Phillip W K Jensen
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | - Sukin Sim
- Department of Chemistry and Chemical Biology, Harvard University, USA
| | - Manuel Díaz-Tinoco
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada. .,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
| | - Jakob S Kottmann
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada. .,Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada.
| | - Matthias Degroote
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada. .,Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada.
| | - Artur F Izmaylov
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada. .,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada. .,Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada. .,Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada.,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Ave., Toronto, ON M5G 1M1, Canada
| |
Collapse
|
21
|
Feldmann R, Muolo A, Baiardi A, Reiher M. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J Chem Theory Comput 2022; 18:234-250. [PMID: 34978441 DOI: 10.1021/acs.jctc.1c00913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We recently introduced [J. Chem. Phys. 2020, 152, 204103] the nuclear-electronic all-particle density matrix renormalization group (NEAP-DMRG) method to solve the molecular Schrödinger equation, based on a stochastically optimized orbital basis, without invoking the Born-Oppenheimer approximation. In this work, we combine the DMRG method with the nuclear-electronic Hartree-Fock (NEHF-DMRG) approach, treating nuclei and electrons on the same footing. Inter- and intraspecies correlations are described within the DMRG method without truncating the excitation degree of the full configuration interaction wave function. We extend the concept of orbital entanglement and mutual information to nuclear-electronic wave functions and demonstrate that they are reliable metrics to detect strong correlation effects. We apply the NEHF-DMRG method to the HeHHe+ molecular ion, to obtain accurate proton densities, ground-state total energies, and vibrational transition frequencies by comparison with state-of-the-art data obtained with grid-based approaches and modern configuration interaction methods. For HCN, we improve on the accuracy of the latter approaches with respect to both the ground-state absolute energy and proton density, which is a major challenge for multireference nuclear-electronic state-of-the-art methods.
Collapse
Affiliation(s)
- Robin Feldmann
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrea Muolo
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
22
|
Aroeira GJR, Davis MM, Turney JM, Schaefer HF. Fermi.jl: A Modern Design for Quantum Chemistry. J Chem Theory Comput 2022; 18:677-686. [PMID: 34978451 DOI: 10.1021/acs.jctc.1c00719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Approximating molecular wave functions involves heavy numerical effort; therefore, codes for such tasks are written completely or partially in efficient languages such as C, C++, and Fortran. While these tools are dominant throughout quantum chemistry packages, the efficient development of new methods is often hindered by the complexity associated with code development. In order to ameliorate this scenario, some software packages take a dual approach where a simpler, higher-level language, such as Python, substitutes the traditional ones wherever performance is not critical. Julia is a novel, dynamically typed, programming language that aims to solve this two-language problem. It gained attention because of its modern and intuitive design, while still being highly optimized to compete with "low-level" languages. Recently, some chemistry-related projects have emerged exploring the capabilities of Julia. Herein, we introduce the quantum chemistry package Fermi.jl, which contains the first implementations of post-Hartree-Fock methods written in Julia. Its design makes use of many Julia core features, including multiple dispatch, metaprogramming, and interactive usage. Fermi.jl is a modular package, where new methods and implementations can be easily added to the existing code. Furthermore, it is designed to maximize code reusability by relying on general functions with specialized methods for particular cases. The feasibility of the project is explored through evaluating the performance of popular ab initio methods. It is our hope that this project motivates the usage of Julia within the community and brings new contributions into Fermi.jl.
Collapse
Affiliation(s)
- Gustavo J R Aroeira
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew M Davis
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Liu J, Cheng L. Unitary coupled-cluster based self-consistent polarization propagator theory: A quadratic unitary coupled-cluster singles and doubles scheme. J Chem Phys 2021; 155:174102. [PMID: 34742195 DOI: 10.1063/5.0062090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of a quadratic unitary coupled-cluster singles and doubles (qUCCSD) based self-consistent polarization propagator method is reported. We present a simple strategy for truncating the commutator expansion of the unitary version of coupled-cluster transformed Hamiltonian H̄. The qUCCSD method for the electronic ground state includes up to double commutators for the amplitude equations and up to cubic commutators for the energy expression. The qUCCSD excited-state eigenvalue equations include up to double commutators for the singles-singles block of H̄, single commutators for the singles-doubles and doubles-singles blocks, and the bare Hamiltonian for the doubles-doubles block. Benchmark qUCCSD calculations of the ground-state properties and excitation energies for representative molecules demonstrate significant improvement of the accuracy and robustness over the previous UCC3 scheme derived using Møller-Plesset perturbation theory.
Collapse
Affiliation(s)
- Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
24
|
Hammes-Schiffer S. Nuclear-electronic orbital methods: Foundations and prospects. J Chem Phys 2021; 155:030901. [PMID: 34293877 DOI: 10.1063/5.0053576] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The incorporation of nuclear quantum effects and non-Born-Oppenheimer behavior into quantum chemistry calculations and molecular dynamics simulations is a longstanding challenge. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum mechanically on the same level as the electrons with wave function and density functional theory methods. This approach inherently includes nuclear delocalization and zero-point energy in molecular energy calculations, geometry optimizations, reaction paths, and dynamics. It can also provide accurate descriptions of excited electronic, vibrational, and vibronic states as well as nuclear tunneling and nonadiabatic dynamics. Nonequilibrium nuclear-electronic dynamics simulations beyond the Born-Oppenheimer approximation can be used to investigate a wide range of excited state processes. This Perspective provides an overview of the foundational NEO methods and enumerates the prospects for using these methods as building blocks for future developments. The conceptual simplicity and computational efficiency of the NEO approach will enhance its accessibility and applicability to diverse chemical and biological systems.
Collapse
|