1
|
Nitika, Arora S, Ahlawat DS. Mechanical strain effect on the optoelectronic properties and photocatalysis applications of layered AlN/GaN nanoheterostructure. J Mol Model 2024; 30:309. [PMID: 39138708 DOI: 10.1007/s00894-024-06103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
CONTEXT The aim of this work is to use first principles calculations to examine the effects of different mechanical strains on the optoelectronic and photocatalytic capabilities of the 2D/2D nanoheterostructure of AlN/GaN. By utilizing the lmBJ (Meta-GGA) and PBEsol (GGA) functional, the bandgap of the nanoheterostructure is calculated and found to be 4.89 eV and 3.24 eV. Simulated 2D AlN/GaN nanoheterostructure exhibits exceptional optical and electronic characteristics under applied biaxial tensile and compressive strains. The band gap changes from 4.89 to 3.77 eV, while the energy gap nature transitions from direct to indirect during tensile strain fluctuations of 0% to 8%. Strain is also found to have a significant effect on the optical absorption peaks. And a 0-8% rise in tensile strain causes the initial absorption peak of the 2D AlN/GaN nanoheterostructure to shift from 4.88 to 4.20 eV, which results in a 14% red shift in photon energy for every 2% change in strain. Furthermore, the optimum bandgap and band edge positions of the 2D AlN/GaN nanoheterostructure enable the water redox process to produce hydrogen and oxygen for wide range of pH. Thus, modification via strain may be an effective method for altering the optical as well as electronic characteristics of a 2D AlN/GaN nanoheterostructure, and this study may pave the way for new applications of this material in optoelectronic devices in the future. METHODS In the current work, density functional theory is used to explore every attribute of the 2D AlN/GaN nanoheterostructure. To characterize the electronic exchange-correlation, we used the PBEsol functional. In order to prevent any interlayer contact between periodicity of images, a vacuum is produced along the z-direction of approximately 10 Å. To increase the precision of bandgap prediction, the electronic and optical characteristics were computed using the meta-GGA lmBJ functional. To account for interlayer van der Waals interactions, nanoheterostructure computations were performed using the DFT-D3 functional.
Collapse
Affiliation(s)
- Nitika
- Department of Physics, Chaudhary Devi Lal University, Sirsa, 125055, (Hry.), India
| | - Sandeep Arora
- Department of Physics, Chaudhary Devi Lal University, Sirsa, 125055, (Hry.), India
- Govt. Model Skt. Sen. Sec. School, Rania, 125076, Sirsa, India
| | | |
Collapse
|
2
|
Nitika, Ahlawat DS, Arora S. Meta-GGA study of 2D AlN/BN planer heterostructure and performance enhancement via strain engineering. J Mol Model 2024; 30:144. [PMID: 38653800 DOI: 10.1007/s00894-024-05948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
CONTEXT The 2D AlN/BN planer heterostructure is a promising wide band gap semiconductor, but systematic studies of its bandgap and optical characteristics under applied strain are scarce. Here, the engineering property of 2D AlN/BN comprising bandgap nature transition and optical absorption capability (from unstrained to strained) have been investigated using density functional theory calculations. The formation energy calculations confirm the stability of the simulated nanoheterostructure. The electronic band structure calculations demonstrate that nanoheterostructure is an indirect bandgap material with a large bandgap of 5.26 eV, which can be modified effectively by applying strain. According to the calculations, the transition from indirect to direct band gap behavior has been observed at +15% biaxial strain with 2.71 eV band gap energy. Meanwhile, calculations for optical absorption and dielectric function reveal that the system has significant absorption peaks in the ultraviolet region which are very sensitive to applied strain. As strain increases, the first absorption peaks are shifted towards a lower energy range from 5.73 eV (Ꜫ= 0 %) to 3.76 eV (Ꜫ = +15%), which features an enhancement of optical absorption for solar and solar-blind regions. Furthermore, we determined that the band edge positions in 2D AlN/BN straddled the water redox potential under strain, indicating its effectiveness as a proficient photocatalyst. These characteristics make 2D AlN/BN planer nanoheterostructure a promising candidate for applications in optoelectronics and photocatalytic water splitting performance. METHODS First principles computations based on density functional theory were employed to carry out all the calculations with a self-consistent approach. For solving the Kohn-Sham equations, the first principles dependent full-potential linearized augmented plane wave scheme were adopted. For addressing the exchange-correlation effects, the generalized gradient approximation of PBEsol functional was used. To prevent interaction between the periodic images, we have inserted a vacuum region of 10 Å in the z-direction. Non-negligible weak dispersion corrections in nanoheterostructure were considered by using the DFT-D3 method of Grimme's. The locally modified Becke-Johnson (lmBJ) exchange potential has also been applied to compute electronic and optical properties in this research to obtain more accurate information.
Collapse
Affiliation(s)
- Nitika
- Department of Physics, Chaudhary Devi Lal University, Sirsa, 125055(Hry.), India
| | | | - Sandeep Arora
- Department of Physics, Chaudhary Devi Lal University, Sirsa, 125055(Hry.), India
| |
Collapse
|
3
|
Nitika, Ahlawat DS, Arora S. Ab-initio study of strain-tunable g-GaN/BN nanoheterostructure for optoelectronic and photocatalytic applications. J Mol Model 2024; 30:128. [PMID: 38598043 DOI: 10.1007/s00894-024-05927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
CONTEXT Two-dimensional (2D) nanoheterostructures of materials, integrating various phase or materials into a single nanosheet have stimulated large-scale research interest for designing novel two dimensional devices. In contemporary analysis present work, we examined the structural and electronic properties of the isolated 2D BN and GaN monolayers. We have investigated the structural stability and optoelectronic and photocatalytic response of the g-GaN/BN nanoheterostructure along with its response to strain. Nanoheterostructure g-GaN/BN is predicted to be a direct bandgap semiconductor with wide gap of 4.45 eV, whose value can be effectively modulated by applied strain ( ϵ ) , ranging from 4.55 ( ϵ = - 4%) to 3.58 eV ( ϵ = 8%). We also discovered that the tensile strain of 8% can substantially tune the direct bandgap of nanoheterostructure to indirect band gap nature. Even more important, the biaxial tensile strain engineering accentuates an enhancement of optical absorption in the UV region, broadening the light harvesting of the g-GaN/BN nanoheterostructure with the shifting of first absorption peak from 4.64 ( ϵ = - 4%) to 3.71 eV ( ϵ = 8%). Furthermore, strain-tuned band edge potentials arrangement perfectly fits the water reduction and oxidation redox potentials. Our findings portend that the g-GaN/BN nanoheterostructure has application in prospective nanoscale optoelectronic devices and photocatalytic hydrogen evolution system. METHODS First principles calculations in this study are performed using density functional theory. Generalized gradient approximation within PBEsol functional employed to address the electron-electron exchange-correlation effects. For avoiding periodic interactions between the layers, we have inserted a vacuum region of thickness 10 Å in the z-direction. For ensuring the convergence accuracy of the computed results, convergence criteria of the iteration process is set to be 0.0001 eV. Local modified Becke-Johnson, a semi local functional, is applied for calculating electronic and optical properties for more accuracy of results. As in layered 2D nanoheterostructure, a factual depiction of the van der Waals interactions cannot be provided by conventional DFT techniques. Accordingly, in order to incorporate these interactions, we had employed the dispersion correction method of Grimme's.
Collapse
Affiliation(s)
- Nitika
- Department of Physics, Chaudhary Devi Lal University, Sirsa-125055 (Hry.), India
| | | | - Sandeep Arora
- Department of Physics, Chaudhary Devi Lal University, Sirsa-125055 (Hry.), India
| |
Collapse
|
4
|
Shen C, Li T, Zhang Y, Xie R, Long T, Fortunato NM, Liang F, Dai M, Shen J, Wolverton CM, Zhang H. Accelerated Screening of Ternary Chalcogenides for Potential Photovoltaic Applications. J Am Chem Soc 2023; 145:21925-21936. [PMID: 37696655 DOI: 10.1021/jacs.3c06207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Chalcogenides, which refer to chalcogen anions, have attracted considerable attention in multiple fields of applications, such as optoelectronics, thermoelectrics, transparent contacts, and thin-film transistors. In comparison to oxide counterparts, chalcogenides have demonstrated higher mobility and p-type dopability, owing to larger orbital overlaps between metal-X covalent chemical bondings and higher-energy valence bands derived by p-orbitals. Despite the potential of chalcogenides, the number of successfully synthesized compounds remains relatively low compared to that of oxides, suggesting the presence of numerous unexplored chalcogenides with fascinating physical characteristics. In this study, we implemented a systematic high-throughput screening process combined with first-principles calculations on ternary chalcogenides using 34 crystal structure prototypes. We generated a computational material database containing over 400,000 compounds by exploiting the ion-substitution approach at different atomic sites with elements in the periodic table. The thermodynamic stabilities of the candidates were validated using the chalcogenides included in the Open Quantum Materials Database. Moreover, we trained a model based on crystal graph convolutional neural networks to predict the thermodynamic stability of novel materials. Furthermore, we theoretically evaluated the electronic structures of the stable candidates using accurate hybrid functionals. A series of in-depth characteristics, including the carrier effective masses, electronic configuration, and photovoltaic conversion efficiency, was also investigated. Our work provides useful guidance for further experimental research in the synthesis and characterization of such chalcogenides as promising candidates, as well as charting the stability and optoelectronic performance of ternary chalcogenides.
Collapse
Affiliation(s)
- Chen Shen
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| | - Tianshu Li
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| | - Yixuan Zhang
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| | - Ruiwen Xie
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| | - Teng Long
- School of Materials Science and Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Nuno M Fortunato
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| | - Fei Liang
- School of Materials Science and Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Mian Dai
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher M Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Hongbin Zhang
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Hessen, Germany
| |
Collapse
|
5
|
Rossomme E, Cunha LA, Li W, Chen K, McIsaac AR, Head-Gordon T, Head-Gordon M. The Good, the Bad, and the Ugly: Pseudopotential Inconsistency Errors in Molecular Applications of Density Functional Theory. J Chem Theory Comput 2023; 19:2827-2841. [PMID: 37156013 DOI: 10.1021/acs.jctc.3c00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The pseudopotential (PP) approximation is one of the most common techniques in computational chemistry. Despite its long history, the development of custom PPs has not tracked with the explosion of different density functional approximations (DFAs). As a result, the use of PPs with exchange/correlation models for which they were not developed is widespread, although this practice is known to be theoretically unsound. The extent of PP inconsistency errors (PPIEs) associated with this practice has not been systematically explored across the types of energy differences commonly evaluated in chemical applications. We evaluate PPIEs for a number of PPs and DFAs across 196 chemically relevant systems of both transition-metal and main-group elements, as represented by the W4-11, TMC34, and S22 data sets. Near the complete basis set limit, these PPs are found to cleanly approach all-electron (AE) results for noncovalent interactions but introduce root-mean-squared errors (RMSEs) upwards of 15 kcal mol-1 into predictions of covalent bond energies for a number of popular DFAs. We achieve significant improvements through the use of empirical atom- and DFA-specific PP corrections, indicating considerable systematicity of the PPIEs. The results of this work have implications for chemical modeling in both molecular contexts and for DFA design, which we discuss.
Collapse
Affiliation(s)
- Elliot Rossomme
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanlu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kaixuan Chen
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexandra R McIsaac
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Ghosh A, Jana S, Rauch T, Tran F, Marques MAL, Botti S, Constantin L, Niranjan MK, Samal P. Efficient and improved prediction of the band offsets at semiconductorheterojunctions from meta-GGA density functionals: a benchmark study. J Chem Phys 2022; 157:124108. [DOI: 10.1063/5.0111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Accurate theoretical prediction of the band offsets at interfaces of semiconductor heterostructures can of-ten be quite challenging. Although density functional theory has been reasonably successful to carry outsuch calculations and efficient and accurate semilocal functionals are desirable to reduce the computational cost. In general, the semilocal functionals based on the generalized gradient approximation (GGA) significantly underestimate the bulk band gaps. This, in turn, results in inaccurate estimates of the band offsets at the heterointerfaces. In this paper, we investigate the performance of several advanced meta-GGA functionals in the computational prediction of band offsets at semiconductor heterojunctions. In particular, we investigate the performance of r 2 SCAN (revised strongly-constrained and appropriately-normed functional), rMGGAC (revised semilocal functional based on cuspless hydrogen model and Pauli kinetic energy density functional), mTASK (modified Aschebrock and Kümmel meta-GGA functional), and LMBJ (local modified Becke-Johnson) exchange-correlation functionals. Our results strongly suggest that these meta-GGA functionals for supercell calculations perform quite well, especially, when compared to computationally more demanding GW calculations. We also present band offsets calculated using ionization potentials and electron affinities, as well as band alignment via the branch point energies. Overall, our study shows that the aforementioned meta-GGA functionals can be used within the DFT framework to estimate the band offsets in semiconductor heterostructures with predictive accuracy.
Collapse
Affiliation(s)
| | - Subrata Jana
- Department of Chemistry and Biochemistry, The Ohio State University, United States of America
| | - Tomas Rauch
- Friedrich Schiller Universität Jena Institut für Festkörpertheorie und -optik, Germany
| | - Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Austria
| | | | - Silvana Botti
- Institut für Festkörpertheorie und -optik, Friedrich Schiller Universität Jena Institut für Festkörpertheorie und -optik, Germany
| | - Lucian Constantin
- Department of Physics, Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy, Italy
| | | | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, India
| |
Collapse
|
7
|
Dardzinski D, Yu M, Moayedpour S, Marom N. Best practices for first-principles simulations of epitaxial inorganic interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:233002. [PMID: 35193122 DOI: 10.1088/1361-648x/ac577b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
At an interface between two materials physical properties and functionalities may be achieved, which would not exist in either material alone. Epitaxial inorganic interfaces are at the heart of semiconductor, spintronic, and quantum devices. First principles simulations based on density functional theory (DFT) can help elucidate the electronic and magnetic properties of interfaces and relate them to the structure and composition at the atomistic scale. Furthermore, DFT simulations can predict the structure and properties of candidate interfaces and guide experimental efforts in promising directions. However, DFT simulations of interfaces can be technically elaborate and computationally expensive. To help researchers embarking on such simulations, this review covers best practices for first principles simulations of epitaxial inorganic interfaces, including DFT methods, interface model construction, interface structure prediction, and analysis and visualization tools.
Collapse
Affiliation(s)
- Derek Dardzinski
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Maituo Yu
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Saeed Moayedpour
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
8
|
Tran F, Doumont J, Kalantari L, Blaha P, Rauch T, Borlido P, Botti S, Marques MAL, Patra A, Jana S, Samal P. Bandgap of two-dimensional materials: Thorough assessment of modern exchange-correlation functionals. J Chem Phys 2021; 155:104103. [PMID: 34525814 DOI: 10.1063/5.0059036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The density-functional theory (DFT) approximations that are the most accurate for the calculation of bandgap of bulk materials are hybrid functionals, such as HSE06, the modified Becke-Johnson (MBJ) potential, and the GLLB-SC potential. More recently, generalized gradient approximations (GGAs), such as HLE16, or meta-GGAs, such as (m)TASK, have also proven to be quite accurate for the bandgap. Here, the focus is on two-dimensional (2D) materials and the goal is to provide a broad overview of the performance of DFT functionals by considering a large test set of 298 2D systems. The present work is an extension of our recent studies [T. Rauch, M. A. L. Marques, and S. Botti, Phys. Rev. B 101, 245163 (2020); Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to the lack of experimental results for the bandgap of 2D systems, G0W0 results were taken as reference. It is shown that the GLLB-SC potential and mTASK functional provide the bandgaps that are the closest to G0W0. Following closely, the local MBJ potential has a pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional HSE06.
Collapse
Affiliation(s)
- Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Jan Doumont
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Leila Kalantari
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Tomáš Rauch
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Pedro Borlido
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Silvana Botti
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
| | - Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|