1
|
Nochebuena J, Liu S, Cisneros GA. Relative cooperativity in neutral and charged molecular clusters using QM/MM calculations. J Chem Phys 2024; 160:134301. [PMID: 38557841 DOI: 10.1063/5.0203020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
QM/MM methods have been used to study electronic structure properties and chemical reactivity in complex molecular systems where direct electronic structure calculations are not feasible. In our previous work, we showed that non-polarizable force fields, by design, describe intermolecular interactions through pairwise interactions, overlooking many-body interactions involving three or more particles. In contrast, polarizable force fields account partially for many-body effects through polarization, but still handle van der Waals and permanent electrostatic interactions pairwise. We showed that despite those limitations, polarizable and non-polarizable force fields can reproduce relative cooperativity achieved using density functional theory due to error compensation mechanisms. In this contribution, we assess the performance of QM/MM methods in reproducing these phenomena. Our study highlights the significance of the QM region size and force field choice in QM/MM calculations, emphasizing the importance of parameter validation to obtain accurate interaction energy predictions.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
2
|
Brandt F, Jacob CR. Efficient automatic construction of atom-economical QM regions with point-charge variation analysis. Phys Chem Chem Phys 2023; 25:14484-14495. [PMID: 37190855 DOI: 10.1039/d3cp01263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The setup of QM/MM calculations is not trivial since many decisions have to be made by the simulation scientist to achieve reasonable and consistent results. The main challenge to be tackled is the construction of the QM region to make sure to take into account all important parts of the adjacent environment and exclude less important ones. In our previous work [F. Brandt and Ch. R. Jacob, Systematic QM Region Construction in QM/MM Calculations Based on Uncertainty Quantification, J. Chem. Theory Comput., 2022, 18, 2584-2596.], we introduced the point charge variation analysis (PCVA) as a simple and reliable tool to systematically construct QM regions based on the sensitivity of the reaction energy with respect to variations of the MM point charges. Here, we assess several simplified variants of this PCVA approach for the example of catechol O-methyltransferase and apply PCVA for another system, the triosephosphate isomerase. Furthermore, we extend its scope by applying it to a DNA system. Our results indicate that PCVA offers an efficient and versatile approach of the automatic construction of atom-economical QM regions, but also identify possible pitfalls and limitations.
Collapse
Affiliation(s)
- Felix Brandt
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany.
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany.
| |
Collapse
|
4
|
Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, Loo CE, Torabifard H, Nicolet D, Wang J, Corrigan K, Paraskevopoulou V, Starczynowski DT, Wang E, Abdel-Wahab O, Viny AD, Stone RM, Byrd JC, Guryanova OA, Kohli RM, Cisneros GA, Tsirigos A, Eisfeld AK, Aifantis I, Guillamot M. The Impact of Inflammation-Induced Tumor Plasticity during Myeloid Transformation. Cancer Discov 2022; 12:2392-2413. [PMID: 35924979 PMCID: PMC9547930 DOI: 10.1158/2159-8290.cd-21-1146] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of mutated preleukemic cells. Individuals with CH are at an increased risk of developing hematopoietic malignancies. Here, we describe a novel animal model carrying a recurrent TET2 missense mutation frequently found in patients with CH and leukemia. In a fashion similar to CH, animals show signs of disease late in life when they develop a wide range of myeloid neoplasms, including acute myeloid leukemia (AML). Using single-cell transcriptomic profiling of the bone marrow, we show that disease progression in aged animals correlates with an enhanced inflammatory response and the emergence of an aberrant inflammatory monocytic cell population. The gene signature characteristic of this inflammatory population is associated with poor prognosis in patients with AML. Our study illustrates an example of collaboration between a genetic lesion found in CH and inflammation, leading to transformation and the establishment of blood neoplasms. SIGNIFICANCE Progression from a preleukemic state to transformation, in the presence of TET2 mutations, is coupled with the emergence of inflammation and a novel population of inflammatory monocytes. Genes characteristic of this inflammatory population are associated with the worst prognosis in patients with AML. These studies connect inflammation to progression to leukemia. See related commentary by Pietras and DeGregori, p. 2234 . This article is highlighted in the In This Issue feature, p. 2221.
Collapse
Affiliation(s)
- Anna Yeaton
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Geraldine Cayanan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU School of Medicine, New York, NY, USA
| | - Emmett M. Leddin
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Christian E. Loo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hedieh Torabifard
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Deedra Nicolet
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingjing Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kate Corrigan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Varvara Paraskevopoulou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel T Starczynowski
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Eric Wang
- MSK Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- MSK Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aaron D Viny
- Department of Genetics & Development, Columbia University, New York, NY, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY, USA; Cancer Genomics and Epigenomics Program, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G. Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU School of Medicine, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Comprehensive Cancer Center, Columbus/OH, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Guillamot
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Nazemi A, Steeves AH, Kastner DW, Kulik HJ. Influence of the Greater Protein Environment on the Electrostatic Potential in Metalloenzyme Active Sites: The Case of Formate Dehydrogenase. J Phys Chem B 2022; 126:4069-4079. [PMID: 35609244 DOI: 10.1021/acs.jpcb.2c02260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mo/W-containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst that reversibly converts CO2 to formate under ambient conditions. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of classical molecular dynamics and multiscale quantum-mechanical (QM)/molecular-mechanical (MM) simulations. We leverage charge shift analysis to systematically construct QM regions and analyze the electronic environment of the active site by evaluating the degree of charge transfer between the core active site and the protein environment. The contribution of the terminal chalcogen ligand to the ESP of the metal center is substantial and dependent on the chalcogen identity, with similar, less negative ESPs for Se and S terminal chalcogens in comparison to O regardless of whether the metal is Mo or W. The orientation of the side chains and conformations of the cofactor also affect the ESP, highlighting the importance of sampling dynamic fluctuations in the protein. Overall, our observations suggest that the terminal chalcogen ligand identity plays an important role in the enzymatic activity of FDH, suggesting opportunities for a rational bioinspired catalyst design.
Collapse
Affiliation(s)
- Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Berger MB, Walker AR, Vázquez-Montelongo EA, Cisneros GA. Computational investigations of selected enzymes from two iron and α-ketoglutarate-dependent families. Phys Chem Chem Phys 2021; 23:22227-22240. [PMID: 34586107 PMCID: PMC8516722 DOI: 10.1039/d1cp03800a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA alkylation is used as the key epigenetic mark in eukaryotes, however, most alkylation in DNA can result in deleterious effects. Therefore, this process needs to be tightly regulated. The enzymes of the AlkB and Ten-Eleven Translocation (TET) families are members of the Fe and alpha-ketoglutarate-dependent superfamily of enzymes that are tasked with dealkylating DNA and RNA in cells. Members of these families span all species and are an integral part of transcriptional regulation. While both families catalyze oxidative dealkylation of various bases, each has specific preference for alkylated base type as well as distinct catalytic mechanisms. This perspective aims to provide an overview of computational work carried out to investigate several members of these enzyme families including AlkB, ALKB Homolog 2, ALKB Homolog 3 and Ten-Eleven Translocate 2. Insights into structural details, mutagenesis studies, reaction path analysis, electronic structure features in the active site, and substrate preferences are presented and discussed.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, USA
| | | | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|