1
|
Sanz-Sanz C, Mandal B, Jambrina PG, Aoiz FJ, Balakrishnan N. Cold collisions of highly vibrationally excited and aligned D2 with Ne. J Chem Phys 2025; 162:164307. [PMID: 40266279 DOI: 10.1063/5.0266360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Resonant scattering of highly vibrationally excited and aligned D2 in cold collisions with Ne has recently been probed experimentally using the Stark-induced adiabatic Raman passage technique [Perreault et al., J. Chem. Phys. 157, 144301 (2022)]. A partial-wave analysis and numerical fitting of the experimental data attributed the measured angular distribution to an l = 2 shape resonance near Ec/kB = 1 K (≈0.7 cm-1). Here, we report the computation of a new potential energy surface for the Ne-H2 interaction suitable for the study of collisions between highly vibrationally excited H2/D2 with Ne as well as quantum scattering calculations of stereodynamics of D2 (v = 4, j = 2) + Ne collisions probing Δj = -2 rotational transition in D2. Our results show that collisions are dominated by a strong l = 5 resonance near 3 K (≈2.09 cm-1) and a weaker l = 6 resonance near 8 K (≈5.56 cm-1) and not an l = 2 resonance, as suggested in the analysis of the experimental data. A reasonable agreement between our calculations and the experiments is obtained only when an artificial energy cutoff is applied to the integral over the collision energy to exclude contributions from the l = 5 resonance while retaining contributions from l = 0, 1, and 2. However, our calculations do not support the claim that the measured angular distributions are dominated by a single l = 2 partial-wave resonance characteristic of orbiting collisions.
Collapse
Affiliation(s)
- Cristina Sanz-Sanz
- Departamento de Química Física Aplicada, Modulo 14, Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Bikramaditya Mandal
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA
| | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca, Salamanca 37008, Spain
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| | - Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA
| |
Collapse
|
2
|
Rawat AMS, Alamgir M, Goswami S, Mahapatra S. A new ground electronic state potential energy surface of HeLiH+: Analytical representation and investigation of the dynamics of He + LiH+ (v = 0, j = 0) → LiHe+ + H reaction. J Chem Phys 2024; 161:124308. [PMID: 39324528 DOI: 10.1063/5.0230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
An improved global potential energy surface (PES) for the electronic ground state of the HeLiH+ system is reported. The data points are calculated at the full configuration-interaction level of theory and extrapolated to the complete basis set limit. The fitting procedure implements a combination of neural network and Aguado-Paniagua functional forms to fit the ab initio data points. The fitted surface reproduces the ab initio data points accurately in short as well as long ranges and has an overall root mean square error of 1.76 × 10-3 eV (14.21 cm-1) in energy space <10 and 9.28 × 10-4 eV (7.48 cm-1) upto 2 eV. The optimized global minimum is also accurately reproduced using the fitted surface. To establish the accuracy of the new PES, dynamics investigation of the He + LiH+(v = 0, j = 0) → LiHe+ + H reaction is performed using the Coriolis coupled quantum mechanical and quasi-classical trajectory methods. The results, such as integral cross sections and rate constants, show the effect of the opening of the collision-induced dissociation (CID) channel at low collision energy and are significantly different from the earlier study of Tacconi et al. [Phys. Chem. Chem. Phys. 14, 637-645 (2012)]. These discrepancies appear to be a result of the treatment of the CID channel in the dynamics calculations, which is excluded from the reactive channel in the current work.
Collapse
Affiliation(s)
| | - Mohammed Alamgir
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sugata Goswami
- Department of Chemistry, Medi-Caps University, A.B. Road, Pigdamber, Indore 453 331, M.P., India
| | - Susanta Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
3
|
Jambrina PG, Croft JFE, Balakrishnan N, Guo H, Aoiz FJ. Determination of collision mechanisms at low energies using four-vector correlations. Faraday Discuss 2024; 251:104-124. [PMID: 38836438 DOI: 10.1039/d3fd00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In molecular dynamics, a fundamental question is how the outcome of a collision depends on the relative orientation of the collision partners before their interaction begins (the stereodynamics of the process). The preference for a particular orientation of the reactant complex is intimately related to the idea of a collision mechanism and the possibility of control, as revealed in recent experiments. Indeed, this preference holds not only for chemical reactions involving complex polyatomic molecules, but also for the simplest inelastic atom-diatom collisions at cold collision energies. In this work, we report how the outcome of rotationally inelastic collisions between two D2 molecules can be controlled by changing the alignment of their internuclear axes under the same or different polarization vectors. Our results demonstrate that a higher degree of control can be achieved when two internuclear axes are aligned, especially when both molecules are relaxed in the collision. The possibility of control extends to very low energies, even to the ultracold regime, when no control could be achieved just by the alignment of the internuclear axis of one of the colliding partners.
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain.
| | - J F E Croft
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - N Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - F J Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain.
| |
Collapse
|
4
|
Buren B, Zhang J, Li Y. Quantum Dynamics Studies of the Li + Na 2 ( V = 0, j = 0) → Na + NaLi Reaction on a New Neural Network Potential Energy Surface. J Phys Chem A 2024; 128:5115-5127. [PMID: 38889710 DOI: 10.1021/acs.jpca.4c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The ultracold reaction offers a unique opportunity to elucidate the intricate microscopic mechanism of chemical reactions, and the Na2Li system serves as a pivotal reaction system in the investigation of ultracold reactions. In this work, a high-precision potential energy surface (PES) of the Na2Li system is constructed based on high-level ab initio energy points and the neural network (NN) method, and a proper asymptotic functional form is adopted for the long-range interaction, which is suitable for the study of cold or ultracold collisions. Based on the new NN PES, the dynamics of the Li + Na2 (v = 0, j = 0) → Na + NaLi reaction are studied in the collision energy range of 10-7 to 80 cm-1. In the high collision energy range of 8 to 80 cm-1, the dynamics of the reaction is studied using the time-dependent wave packet method and the statistical quantum mechanical (SQM) method. Comparing the results of the two methods, it is found that the SQM method provides a rough description of the product ro-vibrational state distribution but overestimates the integral cross-section values. With the decrease of collision energy, the reaction differential cross section gradually changes from forward-backward symmetric scattering to predominant forward scattering. In the low collision energy range from 10-7 to 8 cm-1, the SQM method is used to study the reaction dynamics, and the rate constant in the Wigner threshold region is estimated to be 2.87 × 10-10 cm3/s.
Collapse
Affiliation(s)
- Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Jiapeng Zhang
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, China
| |
Collapse
|
5
|
Mandal B, Croft JFE, Jambrina PG, Guo H, Aoiz FJ, Balakrishnan N. Stereodynamical control of cold HD + D 2 collisions. Phys Chem Chem Phys 2024; 26:18368-18381. [PMID: 38912616 DOI: 10.1039/d4cp01737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We report full-dimensional quantum calculations of stereodynamic control of HD(v = 1, j = 2) + D2 collisions that has been probed experimentally by Perreault et al. using the Stark-induced adiabatic Raman passage (SARP) technique. Computations were performed on two highly accurate full-dimensional H4 potential energy surfaces. It is found that for both potential surfaces, rotational quenching of HD from with concurrent rotational excitation of D2 from is the dominant transition with cross sections four times larger than that of elastically scattered D2 for the same quenching transition in HD. This process was not considered in the original analysis of the SARP experiments that probed ΔjHD = -2 transitions in HD(vHD = 1, jHD = 2) + D2 collisions. Cross sections are characterized by an l = 3 resonance for ortho-D2(jD2 = 0) collisions, while both l = 1 and l = 3 resonances are observed for the para-D2(jD2 = 1) partner. While our results are in excellent agreement with prior measurements of elastic and inelastic differential cross sections, the agreement is less satisfactory with the SARP experiments, in particular for the transition for which the theoretical calculations indicate that D2 rotational excitation channel is the dominant inelastic process.
Collapse
Affiliation(s)
- Bikramaditya Mandal
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| | - James F E Croft
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca, Salamanca 37008, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| | - Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| |
Collapse
|
6
|
Yang S, Lee JU, Chang MH, Kang HG, Oda T. Improved reliability and availability of fundamental properties for all hydrogen isotopologues by Gaussian process regression using data from experiments and path-integral simulations. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 73:392-401. [DOI: 10.1016/j.ijhydene.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Liu Y, Jambrina PG, Croft JFE, Balakrishnan N, Aoiz FJ, Guo H. New Full-Dimensional Reactive Potential Energy Surface for the H 4 System. J Chem Theory Comput 2024; 20:1829-1837. [PMID: 38354106 DOI: 10.1021/acs.jctc.3c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As the most abundant molecule in the universe, collisions involving H2 have important implications in astrochemistry. Collisions between hydrogen molecules also represent a prototype for assessing various dynamic methods for understanding fundamental few-body processes. In this work, we develop a new and highly accurate full-dimensional potential energy surface (PES) covering all reactive channels of the H2 + H2 system, which extends our previously reported H2 + H2 nonreactive PES [J. Chem. Theory Comput., 2021, 17, 6747] by adding 39,538 additional ab initio points calculated at the MRCI/AV5Z level in the reactive channels. The global PES is represented with high fidelity (RMSE = 0.6 meV for a total of 79,000 points) by a permutation invariant polynomial neural network (PIP-NN) and is suitable for studying collision-induced dissociation, single-exchange, as well as four-center exchange reactions. Preliminary quasi-classical trajectory studies on the new PIP-NN PES reveal strong vibrational enhancement of all reaction channels.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Pablo G Jambrina
- Departamento de Quimica Fisica, Universidad de Salamanca, Salamanca 37008, Spain
| | - James F E Croft
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Otago, Dunedin 9054, New Zealand
| | - Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - F Javier Aoiz
- Departamento de Quimica Fisica, Universidad Complutense, Madrid 28040, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
Pandey P, Qu C, Nandi A, Yu Q, Houston PL, Conte R, Bowman JM. Ab Initio Potential Energy Surface for NaCl-H 2 with Correct Long-Range Behavior. J Phys Chem A 2024; 128:902-908. [PMID: 38271992 PMCID: PMC10860134 DOI: 10.1021/acs.jpca.3c07687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
We report a full dimensional ab initio potential energy surface for NaCl-H2 based on precise fitting of a large data set of CCSD(T)/aug-cc-pVTZ energies. A major goal of this fit is to describe the very long-range interaction accurately. This is done in this instance via the dipole-quadrupole interaction. The NaCl dipole and the H2 quadrupole are available through previous works over a large range of internuclear distances. We use these to obtain exact effect charges on each atom. Diffusion Monte Carlo calculations are done for the ground vibrational state using the new potential.
Collapse
Affiliation(s)
- Priyanka Pandey
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
| | - Chen Qu
- Independent
Researcher, Toronto ON M9B 0E3, Canada
| | - Apurba Nandi
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
- Department
of Physics and Materials Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| | - Qi Yu
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
| | - Paul L. Houston
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Riccardo Conte
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Via Golgi 19, Milano 20133, Italy
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
9
|
Balakrishnan N, Jambrina PG, Croft JFE, Guo H, Aoiz FJ. Quantum stereodynamics of cold molecular collisions. Chem Commun (Camb) 2024; 60:1239-1256. [PMID: 38197484 DOI: 10.1039/d3cc04762h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Advances in quantum state preparations combined with molecular cooling and trapping technologies have enabled unprecedented control of molecular collision dynamics. This progress, achieved over the last two decades, has dramatically improved our understanding of molecular phenomena in the extreme quantum regime characterized by translational temperatures well below a kelvin. In this regime, collision outcomes are dominated by isolated partial waves, quantum threshold and quantum statistics effects, tiny energy splitting at the spin and hyperfine levels, and long-range forces. Collision outcomes are influenced not only by the quantum state preparation of the initial molecular states but also by the polarization of their rotational angular momentum, i.e., stereodynamics of molecular collisions. The Stark-induced adiabatic Raman passage technique developed in the last several years has become a versatile tool to study the stereodynamics of light molecular collisions in which alignment of the molecular bond axis relative to initial collision velocity can be fully controlled. Landmark experiments reported by Zare and coworkers have motivated new theoretical developments, including formalisms to describe four-vector correlations in molecular collisions that are revealed by the experiments. In this Feature article, we provide an overview of recent theoretical developments for the description of stereodynamics of cold molecular collisions and their implications to cold controlled chemistry.
Collapse
Affiliation(s)
- Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| | - Pablo G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain
| | - James F E Croft
- The Dodd Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Otago, Dunedin, New Zealand
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
10
|
Yang Z, Chen H, Buren B, Chen M. Globally Accurate Gaussian Process Potential Energy Surface and Quantum Dynamics Studies on the Li( 2S) + Na 2 → LiNa + Na Reaction at Low Collision Energies. Molecules 2023; 28:2938. [PMID: 37049701 PMCID: PMC10096016 DOI: 10.3390/molecules28072938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The LiNa2 reactive system has recently received great attention in the experimental study of ultracold chemical reactions, but the corresponding theoretical calculations have not been carried out. Here, we report the first globally accurate ground-state LiNa2 potential energy surface (PES) using a Gaussian process model based on only 1776 actively selected high-level ab initio training points. The constructed PES had high precision and strong generalization capability. On the new PES, the quantum dynamics calculations on the Li(2S) + Na2(v = 0, j = 0) → LiNa + Na reaction were carried out in the 0.001-0.01 eV collision energy range using an improved time-dependent wave packet method. The calculated results indicate that this reaction is dominated by a complex-forming mechanism at low collision energies. The presented dynamics data provide guidance for experimental research, and the newly constructed PES could be further used for ultracold reaction dynamics calculations on this reactive system.
Collapse
Affiliation(s)
- Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hanghang Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Croft JFE, Jambrina PG, Aoiz FJ, Guo H, Balakrishnan N. Cold Collisions of Ro-Vibrationally Excited D 2 Molecules. J Phys Chem A 2023; 127:1619-1627. [PMID: 36787203 DOI: 10.1021/acs.jpca.2c08855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The H2 + H2 system has long been considered a benchmark system for ro-vibrational energy transfer in bimolecular collisions. However, most studies thus far have focused on collisions involving H2 molecules in the ground vibrational level or in the first excited vibrational state. While H2 + H2/HD collisions have received wide attention due to the important role they play in astrophysics, D2 + D2 collisions have received much less attention. Recently, Zhou et al. [ Nat. Chem. 2022, 14, 658-663, DOI: 10.1038/s41557-022-00926-z] examined stereodynamic aspects of rotational energy transfer in collisions of two aligned D2 molecules prepared in the v = 2 vibrational level and j = 2 rotational level. Here, we report quantum calculations of rotational and vibrational energy transfer in collisions of two D2 molecules prepared in vibrational levels up to v = 2 and identify key resonance features that contribute to the angular distribution in the experimental results of Zhou et al. The quantum scattering calculations were performed in full dimensionality and using the rigid-rotor approximation using a recently developed highly accurate six-dimensional potential energy surface for the H4 system that allows descriptions of collisions involving highly vibrationally excited H2 and its isotopologues.
Collapse
Affiliation(s)
- James F E Croft
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand.,Department of Physics, University of Otago, Dunedin 9016, New Zealand
| | - Pablo G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - N Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
12
|
Yang D, Guo H, Xie D. Recent advances in quantum theory on ro-vibrationally inelastic scattering. Phys Chem Chem Phys 2023; 25:3577-3594. [PMID: 36602236 DOI: 10.1039/d2cp05069b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular collisions are of fundamental importance in understanding intermolecular interaction and dynamics. Its importance is accentuated in cold and ultra-cold collisions because of the dominant quantum mechanical nature of the scattering. We review recent advances in the time-independent approach to quantum mechanical characterization of non-reactive scattering in tetratomic systems, which is ideally suited for large collisional de Broglie wavelengths characteristic in cold and ultracold conditions. We discuss quantum scattering algorithms between two diatoms and between a triatom and an atom and their implementation, as well as various approximate schemes. They not only enable the characterization of collision dynamics in realistic systems but also serve as benchmarks for developing more approximate methods.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
13
|
Jambrina PG, Croft JFE, Zuo J, Guo H, Balakrishnan N, Aoiz FJ. Stereodynamical Control of Cold Collisions between Two Aligned D_{2} Molecules. PHYSICAL REVIEW LETTERS 2023; 130:033002. [PMID: 36763383 DOI: 10.1103/physrevlett.130.033002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/25/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Resonant scattering of optically state-prepared and aligned molecules in the cold regime allows the most detailed interrogation and control of bimolecular collisions. This technique has recently been applied to collisions of two aligned ortho-D_{2} molecules prepared in the j=2 rotational level of the v=2 vibrational manifold using the Stark-induced adiabatic Raman passage technique. Here, we develop the theoretical formalism for describing four-vector correlations in collisions of two aligned molecules and apply our approach to state-prepared D_{2}(v=2,j=2)+D_{2}(v=2,j=2)→D_{2}(v=2,j=2)+D_{2}(v=2,j=0) collisions, making possible the simulations of the experimental results from first principles. Key features of the experimental angular distributions are reproduced and attributed primarily to a partial wave resonance with orbital angular momentum ℓ=4.
Collapse
Affiliation(s)
- Pablo G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain
| | - James F E Croft
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand and Department of Physics, University of Otago, Dunedin 9054, New Zealand
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense. Madrid 28040, Spain
| |
Collapse
|
14
|
Buren B, Chen M. Wave Packet Approach to Adiabatic and Nonadiabatic Dynamics of Cold Inelastic Scatterings. Molecules 2022; 27:2912. [PMID: 35566262 PMCID: PMC9101670 DOI: 10.3390/molecules27092912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the extremely large de Broglie wavelength of cold molecules, cold inelastic scattering is always characterized by the time-independent close-coupling (TICC) method. However, the TICC method is difficult to apply to collisions of large molecular systems. Here, we present a new strategy for characterizing cold inelastic scattering using wave packet (WP) method. In order to deal with the long de Broglie wavelength of cold molecules, the total wave function is divided into interaction, asymptotic and long-range regions (IALR). The three regions use different numbers of ro-vibrational basis functions, especially the long-range region, which uses only one function corresponding to the initial ro-vibrational state. Thus, a very large grid range can be used to characterize long de Broglie wavelengths in scattering coordinates. Due to its better numerical scaling law, the IALR-WP method has great potential in studying the inelastic scatterings of larger collision systems at cold and ultracold regimes.
Collapse
Affiliation(s)
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
15
|
Yang Z, Chen H, Mao Y, Chen M. Neural network potential energy surface and quantum dynamics studies for the Ca +( 2S) + H 2 → CaH + + H reaction. Phys Chem Chem Phys 2022; 24:19209-19217. [DOI: 10.1039/d2cp02711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive collisions of Ca+ ion with H2 molecule play a crucial role in ultracold chemistry, quantum information and other cutting-edge fields, and have been widely concerned experimentally, but the corresponding...
Collapse
|