1
|
Bittner JP, Zhang N, Domínguez de María P, Smirnova I, Kara S, Jakobtorweihen S. Molecular Understanding of Activity Changes of Alcohol Dehydrogenase in Deep Eutectic Solvents. J Phys Chem B 2025; 129:1197-1213. [PMID: 39818846 DOI: 10.1021/acs.jpcb.4c06523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Deep eutectic solvents (DESs) have emerged as promising solvents for biocatalysis. While their impact on enzyme solvation and stabilization has been studied for several enzyme classes, their role in substrate binding is yet to be investigated. Herein, molecular dynamics (MD) simulations of horse-liver alcohol dehydrogenase (HLADH) are performed in choline chloride-ethylene glycol (ChCl-EG) and choline chloride-glycerol (ChCl-Gly) at varying water concentrations. In the DES solutions, the active site was significantly constricted, and its flexibility reduced when compared to the aqueous medium. Importantly, the cavity size follows a similar trend as the catalytic activity of HLADH and as such explains previously observed activity changes. To understand the impact on the binding of the substrate (cyclohexanone), an umbrella sampling (US) setup was established to calculate the free energy changes along the substrate binding tunnel of HLADH. The US combined with replica exchange and NADH in its cofactor pocket provided the best sampling of the entire active site, explaining why the cyclohexanone binding on HLADH is reduced with increasing DES content. As different components in these multicomponent mixtures influence the substrate binding, we additionally applied the US setup to study the ability of the DES components to be present inside the substrate tunnel. The presented approach may become useful to understand enzyme behaviors in DESs and to enable the design of more enzyme-compatible and tunable solvents.
Collapse
Affiliation(s)
- Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, Hamburg 21073, Germany
| | - Ningning Zhang
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, Hannover, Germany 30167
| | - Pablo Domínguez de María
- Sustainable Momentum S.L., Avenue Ansite 3, 4-6, Canary Islands, Las Palmas de Gran Canaria 35011, Spain
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, Hamburg 21073, Germany
| | - Selin Kara
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, Hannover, Germany 30167
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus, Denmark 8000
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, Hamburg 21073, Germany
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, Hamburg 21073, Germany
| |
Collapse
|
2
|
Karrenbrock M, Borsatto A, Rizzi V, Lukauskis D, Aureli S, Luigi Gervasio F. Absolute Binding Free Energies with OneOPES. J Phys Chem Lett 2024; 15:9871-9880. [PMID: 39302888 PMCID: PMC11457222 DOI: 10.1021/acs.jpclett.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The calculation of absolute binding free energies (ABFEs) for protein-ligand systems has long been a challenge. Recently, refined force fields and algorithms have improved the quality of the ABFE calculations. However, achieving the level of accuracy required to inform drug discovery efforts remains difficult. Here, we present a transferable enhanced sampling strategy to accurately calculate absolute binding free energies using OneOPES with simple geometric collective variables. We tested the strategy on two protein targets, BRD4 and Hsp90, complexed with a total of 17 chemically diverse ligands, including both molecular fragments and drug-like molecules. Our results show that OneOPES accurately predicts protein-ligand binding affinities with a mean unsigned error within 1 kcal mol-1 of experimentally determined free energies, without the need to tailor the collective variables to each system. Furthermore, our strategy effectively samples different ligand binding modes and consistently matches the experimentally determined structures regardless of the initial protein-ligand configuration. Our results suggest that the proposed OneOPES strategy can be used to inform lead optimization campaigns in drug discovery and to study protein-ligand binding and unbinding mechanisms.
Collapse
Affiliation(s)
- Maurice Karrenbrock
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel-Servet 1, CH-1206 Geneva, CH
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, CH
- Swiss
Bioinformatics Institute, University of
Geneva, CH-1206 Geneva, CH
| | - Alberto Borsatto
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel-Servet 1, CH-1206 Geneva, CH
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, CH
- Swiss
Bioinformatics Institute, University of
Geneva, CH-1206 Geneva, CH
| | - Valerio Rizzi
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel-Servet 1, CH-1206 Geneva, CH
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, CH
- Swiss
Bioinformatics Institute, University of
Geneva, CH-1206 Geneva, CH
| | - Dominykas Lukauskis
- Chemistry
Department, University College London (UCL), WC1E 6BT London, U.K.
| | - Simone Aureli
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel-Servet 1, CH-1206 Geneva, CH
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, CH
- Swiss
Bioinformatics Institute, University of
Geneva, CH-1206 Geneva, CH
| | - Francesco Luigi Gervasio
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel-Servet 1, CH-1206 Geneva, CH
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, CH
- Swiss
Bioinformatics Institute, University of
Geneva, CH-1206 Geneva, CH
- Chemistry
Department, University College London (UCL), WC1E 6BT London, U.K.
| |
Collapse
|
3
|
Fu H, Chipot C, Shao X, Cai W. Standard Binding Free-Energy Calculations: How Far Are We from Automation? J Phys Chem B 2023; 127:10459-10468. [PMID: 37824848 DOI: 10.1021/acs.jpcb.3c04370] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Recent success stories suggest that in silico protein-ligand binding free-energy calculations are approaching chemical accuracy. However, their widespread application remains limited by the extensive human intervention required, posing challenges for the neophyte. As such, it is critical to develop automated workflows for estimating protein-ligand binding affinities with minimum personal involvement. Key human efforts include setting up and tuning enhanced-sampling or alchemical-transformation algorithms as a preamble to computational binding free-energy estimations. Additionally, preparing input files, bookkeeping, and postprocessing represent nontrivial tasks. In this Perspective, we discuss recent progress in automating standard binding free-energy calculations, featuring the development of adaptive or parameter-free algorithms, standardization of binding free-energy calculation workflows, and the implementation of user-friendly software. We also assess the current state of automated standard binding free-energy calculations and evaluate the limitations of existing methods. Last, we outline the requirements for future algorithms and workflows to facilitate automated free-energy calculations for diverse protein-ligand complexes.
Collapse
Affiliation(s)
- Haohao Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR no. 7019, Université de Lorraine, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Xueguang Shao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Ray D, Parrinello M. Kinetics from Metadynamics: Principles, Applications, and Outlook. J Chem Theory Comput 2023; 19:5649-5670. [PMID: 37585703 DOI: 10.1021/acs.jctc.3c00660] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Metadynamics is a popular enhanced sampling algorithm for computing the free energy landscape of rare events by using molecular dynamics simulation. Ten years ago, Tiwary and Parrinello introduced the infrequent metadynamics approach for calculating the kinetics of transitions across free energy barriers. Since then, metadynamics-based methods for obtaining rate constants have attracted significant attention in computational molecular science. Such methods have been applied to study a wide range of problems, including protein-ligand binding, protein folding, conformational transitions, chemical reactions, catalysis, and nucleation. Here, we review the principles of elucidating kinetics from metadynamics-like approaches, subsequent methodological developments in this area, and successful applications on chemical, biological, and material systems. We also highlight the challenges of reconstructing accurate kinetics from enhanced sampling simulations and the scope of future developments.
Collapse
Affiliation(s)
- Dhiman Ray
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Michele Parrinello
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| |
Collapse
|
5
|
Ray D, Ansari N, Rizzi V, Invernizzi M, Parrinello M. Rare Event Kinetics from Adaptive Bias Enhanced Sampling. J Chem Theory Comput 2022; 18:6500-6509. [PMID: 36194840 DOI: 10.1021/acs.jctc.2c00806] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We introduce a novel enhanced sampling approach named on-the-fly probability enhanced sampling (OPES) flooding for calculating the kinetics of rare events from atomistic molecular dynamics simulation. This method is derived from the OPES approach [Invernizzi and Parrinello, J. Phys. Chem. Lett. 2020, 11, 7, 2731-2736], which has been recently developed for calculating converged free energy surfaces for complex systems. In this paper, we describe the theoretical details of the OPES flooding technique and demonstrate the application on three systems of increasing complexity: barrier crossing in a two-dimensional double-well potential, conformational transition in the alanine dipeptide in the gas phase, and the folding and unfolding of the chignolin polypeptide in an aqueous environment. From extensive tests, we show that the calculation of accurate kinetics not only requires the transition state to be bias-free, but the amount of bias deposited should also not exceed the effective barrier height measured along the chosen collective variables. In this vein, the possibility of computing rates from biasing suboptimal order parameters has also been explored. Furthermore, we describe the choice of optimum parameter combinations for obtaining accurate results from limited computational effort.
Collapse
Affiliation(s)
- Dhiman Ray
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Narjes Ansari
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Valerio Rizzi
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy.,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | | | - Michele Parrinello
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| |
Collapse
|