1
|
Tuckman H, Ma Z, Neuscamman E. Improving Aufbau Suppressed Coupled Cluster through Perturbative Analysis. J Chem Theory Comput 2025; 21:3993-4005. [PMID: 40208203 DOI: 10.1021/acs.jctc.5c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Guided by perturbative analysis, we improve the accuracy of Aufbau suppressed coupled cluster theory in simple single excitations, multiconfigurational single excitations, and charge transfer excitations while keeping the cost of its leading-order terms precisely in line with ground-state coupled cluster. Combining these accuracy improvements with a more efficient implementation based on spin adaptation, we observe high accuracy in a large test set of single excitations and, in particular, a mean unsigned error for charge transfer states that outperforms equation-of-motion coupled cluster theory by 0.25 eV. We discuss how these results are achieved via a systematic identification of which amplitudes to prioritize for single- and multiconfigurational excited states, and how this prioritization differs in important ways from the ground-state theory. In particular, our data show that a partial linearization of the theory increases accuracy by mitigating unwanted side effects of Aufbau suppression.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ziheng Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Pillai Y, Burton HGA, Wales DJ. Effect of Exact Exchange on the Energy Landscape in Self-Consistent Field Theory. J Chem Theory Comput 2025; 21:1203-1212. [PMID: 39824763 PMCID: PMC11823404 DOI: 10.1021/acs.jctc.4c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Density functional approximations can reduce the spin symmetry breaking observed for self-consistent field (SCF) solutions compared to Hartree-Fock theory, but the amount of exact Hartree-Fock (HF) exchange appears to be a key determinant in broken Ŝ2 symmetry. To elucidate the precise role of exact exchange, we investigate the energy landscape of unrestricted Hartree-Fock and Kohn-Sham density functional theory for benzene and square cyclobutadiene, which provide paradigmatic examples of closed-shell and open-shell electronic structures, respectively. We find that increasing the amount of exact exchange leads to more local SCF minima, which can be characterized as combinatorial arrangements of unpaired electrons in the carbon π system. Furthermore, we studied the pathways connecting local minima to understand the relationships between different solutions. Our analysis reveals a subtle balance between one- and two-body interactions in determining SCF symmetry breaking, shedding new light on the physical driving forces for spin-symmetry-broken solutions in SCF approaches.
Collapse
Affiliation(s)
- Yuthika Pillai
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Hugh G. A. Burton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Bogo N, Stein CJ. Benchmarking DFT-based excited-state methods for intermolecular charge-transfer excitations. Phys Chem Chem Phys 2024; 26:21575-21588. [PMID: 39082837 DOI: 10.1039/d4cp01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Intermolecular charge-transfer is a highly important process in biology and energy-conversion applications where generated charges need to be transported over several moieties. However, its theoretical description is challenging since the high accuracy required to describe these excited states must be accessible for calculations on large molecular systems. In this benchmark study, we identify reliable low-scaling computational methods for this task. Our reference results were obtained from highly accurate wavefunction calculations that restrict the size of the benchmark systems. However, the density-functional theory based methods that we identify as accurate can be applied to much larger systems. Since targeting charge-transfer states requires the unambiguous classification of an excited state, we first analyze several charge-transfer descriptors for their reliability concerning intermolecular charge-transfer and single out the charge-transfer distance calculated based on the variation of electron density upon excitation (DCT) as an optimal choice for our purposes. In general, best results are obtained for orbital-optimized methods and among those, the maximum overlap method proved to be the most numerically stable variant when using the initial MOs as reference orbitals. Favorable error cancellation with optimally-tuned range-separated hybrid functionals and a rather small basis set can provide an economical yet reasonable wavefunction when using time-dependent density functional theory, which provides relevant information about the excited-state character to be used in the orbital-optimized methods. The qualitative agreement makes these fast calculations attractive for high-throughput screening applications.
Collapse
Affiliation(s)
- Nicola Bogo
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Christopher J Stein
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| |
Collapse
|
4
|
Saade S, Burton HGA. Excited State-Specific CASSCF Theory for the Torsion of Ethylene. J Chem Theory Comput 2024; 20:5105-5114. [PMID: 38847452 PMCID: PMC11209946 DOI: 10.1021/acs.jctc.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
State-specific complete active space self-consistent field (SS-CASSCF) theory has emerged as a promising route to accurately predict electronically excited energy surfaces away from molecular equilibria. However, its accuracy and practicality for chemical systems of photochemical interest have yet to be fully determined. We investigate the performance of the SS-CASSCF theory for the low-lying ground and excited states in the double bond rotation of ethylene. We show that state-specific approximations with a minimal (2e,2o) active space provide comparable accuracy to state-averaged calculations with much larger active spaces, while optimizing the orbitals for each excited state significantly improves the spatial diffusivity of the wave function. However, the incorrect ordering of state-specific solutions causes excited state solutions to coalesce and disappear, creating unphysical discontinuities in the potential energy surface. Our findings highlight the theoretical challenges that must be overcome to realize practical applications of state-specific electronic structure theory for computational photochemistry.
Collapse
Affiliation(s)
- Sandra Saade
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Chemistry, Physical and Theoretical Chemical Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Hugh G. A. Burton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Damour Y, Scemama A, Jacquemin D, Kossoski F, Loos PF. State-Specific Coupled-Cluster Methods for Excited States. J Chem Theory Comput 2024; 20:4129-4145. [PMID: 38749498 PMCID: PMC11137840 DOI: 10.1021/acs.jctc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
We reexamine ΔCCSD, a state-specific coupled-cluster (CC) with single and double excitations (CCSD) approach that targets excited states through the utilization of non-Aufbau determinants. This methodology is particularly efficient when dealing with doubly excited states, a domain in which the standard equation-of-motion CCSD (EOM-CCSD) formalism falls short. Our goal here to evaluate the effectiveness of ΔCCSD when applied to other types of excited states, comparing its consistency and accuracy with EOM-CCSD. To this end, we report a benchmark on excitation energies computed with the ΔCCSD and EOM-CCSD methods for a set of molecular excited-state energies that encompasses not only doubly excited states but also doublet-doublet transitions and (singlet and triplet) singly excited states of closed-shell systems. In the latter case, we rely on a minimalist version of multireference CC known as the two-determinant CCSD method to compute the excited states. Our data set, consisting of 276 excited states stemming from the quest database [Véril et al., WIREs Comput. Mol. Sci. 2021, 11, e1517], provides a significant base to draw general conclusions concerning the accuracy of ΔCCSD. Except for the doubly excited states, we found that ΔCCSD underperforms EOM-CCSD. For doublet-doublet transitions, the difference between the mean absolute errors (MAEs) of the two methodologies (of 0.10 and 0.07 eV) is less pronounced than that obtained for singly excited states of closed-shell systems (MAEs of 0.15 and 0.08 eV). This discrepancy is largely attributed to a greater number of excited states in the latter set exhibiting multiconfigurational characters, which are more challenging for ΔCCSD. We also found typically small improvements by employing state-specific optimized orbitals.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Anthony Scemama
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Denis Jacquemin
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut
Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Pierre-François Loos
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
6
|
Selenius E, Sigurdarson AE, Schmerwitz YLA, Levi G. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States. J Chem Theory Comput 2024; 20:3809-3822. [PMID: 38695313 DOI: 10.1021/acs.jctc.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The performance of time-independent, orbital-optimized calculations of excited states is assessed with respect to charge transfer excitations in organic molecules in comparison to the linear-response time-dependent density functional theory (TD-DFT) approach. A direct optimization method to converge on saddle points of the electronic energy surface is used to carry out calculations with the local density approximation (LDA) and the generalized gradient approximation (GGA) functionals PBE and BLYP for a set of 27 excitations in 15 molecules. The time-independent approach is fully variational and provides a relaxed excited state electron density from which the extent of charge transfer is quantified. The TD-DFT calculations are generally found to provide larger charge transfer distances compared to the orbital-optimized calculations, even when including orbital relaxation effects with the Z-vector method. While the error on the excitation energy relative to theoretical best estimates is found to increase with the extent of charge transfer up to ca. -2 eV for TD-DFT, no correlation is observed for the orbital-optimized approach. The orbital-optimized calculations with the LDA and the GGA functionals provide a mean absolute error of ∼0.7 eV, outperforming TD-DFT with both local and global hybrid functionals for excitations with a long-range charge transfer character. Orbital-optimized calculations with the global hybrid functional B3LYP and the range-separated hybrid functional CAM-B3LYP on a selection of states with short- and long-range charge transfer indicate that inclusion of exact exchange has a small effect on the charge transfer distance, while it significantly improves the excitation energy, with the best-performing functional CAM-B3LYP providing an absolute error typically around 0.15 eV.
Collapse
Affiliation(s)
- Elli Selenius
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| | | | | | - Gianluca Levi
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| |
Collapse
|
7
|
Yamamoto K, Sakaguchi M, Onishi A, Yokoyama S, Matsui Y, Yamamoto W, Onizawa H, Fujii T, Murata K, Tanaka M, Hashimoto M, Matsuda S, Morinobu A. Energy landscape analysis and time-series clustering analysis of patient state multistability related to rheumatoid arthritis drug treatment: The KURAMA cohort study. PLoS One 2024; 19:e0302308. [PMID: 38709812 PMCID: PMC11073743 DOI: 10.1371/journal.pone.0302308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Rheumatoid arthritis causes joint inflammation due to immune abnormalities, resulting in joint pain and swelling. In recent years, there have been considerable advancements in the treatment of this disease. However, only approximately 60% of patients achieve remission. Patients with multifactorial diseases shift between states from day to day. Patients may remain in a good or poor state with few or no transitions, or they may switch between states frequently. The visualization of time-dependent state transitions, based on the evaluation axis of stable/unstable states, may provide useful information for achieving rheumatoid arthritis treatment goals. Energy landscape analysis can be used to quantitatively determine the stability/instability of each state in terms of energy. Time-series clustering is another method used to classify transitions into different groups to identify potential patterns within a time-series dataset. The objective of this study was to utilize energy landscape analysis and time-series clustering to evaluate multidimensional time-series data in terms of multistability. We profiled each patient's state transitions during treatment using energy landscape analysis and time-series clustering. Energy landscape analysis divided state transitions into two patterns: "good stability leading to remission" and "poor stability leading to treatment dead-end." The number of patients whose disease status improved increased markedly until approximately 6 months after treatment initiation and then plateaued after 1 year. Time-series clustering grouped patients into three clusters: "toward good stability," "toward poor stability," and "unstable." Patients in the "unstable" cluster are considered to have clinical courses that are difficult to predict; therefore, these patients should be treated with more care. Early disease detection and treatment initiation are important. The evaluation of state multistability enables us to understand a patient's current state in the context of overall state transitions related to rheumatoid arthritis drug treatment and to predict future state transitions.
Collapse
Affiliation(s)
- Keiichi Yamamoto
- Division of Data Science, Center for Industrial Research and Innovation, Translational Research Institute for Medical Innovation, Osaka Dental University, Hirakata City, Osaka, Japan
| | - Masahiko Sakaguchi
- Department of Engineering Informatics, Faculty of Information and Communication Engineering, Osaka Electro-Communication University, Neyagawa City, Osaka, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | | | | | - Wataru Yamamoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
- Department of Health Information Management, Kurashiki Sweet Hospital, Nakasho, Kurashiki, Kurashiki City, Okayama Prefecture, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Takayuki Fujii
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka City, Japan
| | - Shuichi Matsuda
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Akio Morinobu
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| |
Collapse
|
8
|
Tuckman H, Neuscamman E. Aufbau Suppressed Coupled Cluster Theory for Electronically Excited States. J Chem Theory Comput 2024; 20:2761-2773. [PMID: 38502102 DOI: 10.1021/acs.jctc.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We introduce an approach to improve single-reference coupled cluster theory in settings where the Aufbau determinant is absent from or plays only a small role in the true wave function. Using a de-excitation operator that can be efficiently hidden within a similarity transform, we create a coupled cluster wave function in which de-excitations work to suppress the Aufbau determinant and produce wave functions dominated by other determinants. Thanks to an invertible and fully exponential form, the approach is systematically improvable, size consistent, size extensive, and, interestingly, size intensive in a granular way that should make the adoption of some ground state techniques, such as local correlation, relatively straightforward. In this initial study, we apply the general formalism to create a state-specific method for orbital-relaxed, singly excited states. We find that this approach matches the accuracy of similar-cost equation-of-motion methods in valence excitations while offering improved accuracy for charge transfer states. We also find the approach to be more accurate than excited-state-specific perturbation theory in both types of states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Schraivogel T, Kats D. Two determinant distinguishable cluster. J Chem Phys 2024; 160:124109. [PMID: 38526108 DOI: 10.1063/5.0199274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
A two reference determinant version of the distinguishable cluster with singles and doubles (DCSD) has been developed. We have implemented the two determinant distinguishable cluster (2D-DCSD) and the corresponding traditional 2D-CCSD method in a new open-source package written in Julia called ElemCo.jl. The methods were benchmarked on singlet and triplet excited states of valence and Rydberg character, as well as for singlet-triplet gaps of diradicals. It is demonstrated that the distinguishable cluster approximation improves the accuracy of 2D-CCSD.
Collapse
Affiliation(s)
- Thomas Schraivogel
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Burton HGA, Loos PF. Rationale for the extrapolation procedure in selected configuration interaction. J Chem Phys 2024; 160:104102. [PMID: 38456526 DOI: 10.1063/5.0192458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Selected configuration interaction (SCI) methods have emerged as state-of-the-art methodologies for achieving high accuracy and generating benchmark reference data for ground and excited states in small molecular systems. However, their precision relies heavily on extrapolation procedures to produce a final estimate of the exact result. Using the structure of the exact electronic energy landscape, we provide a rationale for the common linear extrapolation of the variational energy as a function of the second-order perturbative correction. In particular, we demonstrate that the energy gap and the coupling between the so-called internal and external spaces are the key factors determining the rate at which the linear regime is reached. Starting from the first principles, we also derive a new non-linear extrapolation formula that improves the post-processing of data generated from SCI methods and can be applied to both ground- and excited-state energies.
Collapse
Affiliation(s)
- Hugh G A Burton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
11
|
Sigurdarson AE, Schmerwitz YLA, Tveiten DKV, Levi G, Jónsson H. Orbital-optimized density functional calculations of molecular Rydberg excited states with real space grid representation and self-interaction correction. J Chem Phys 2023; 159:214109. [PMID: 38047508 DOI: 10.1063/5.0179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Density functional calculations of Rydberg excited states up to high energy are carried out for several molecules using an approach where the orbitals are variationally optimized by converging on saddle points on the electronic energy surface within a real space grid representation. Remarkably good agreement with experimental estimates of the excitation energy is obtained using the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE) when Perdew-Zunger self-interaction correction is applied in combination with complex-valued orbitals. Even without the correction, the PBE functional gives quite good results despite the fact that corresponding Rydberg virtual orbitals have positive energy in the ground state calculation. Results obtained using the Tao, Perdew, Staroverov, and Scuseria (TPSS) and r2SCAN meta-GGA functionals are also presented, but they do not provide a systematic improvement over the results from the uncorrected PBE functional. The grid representation combined with the projector augmented-wave approach gives a simpler and better representation of diffuse Rydberg orbitals than a linear combination of atomic orbitals with commonly used basis sets, the latter leading to an overestimation of the excitation energy due to confinement of the excited states.
Collapse
Affiliation(s)
- Alec E Sigurdarson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Yorick L A Schmerwitz
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Dagrún K V Tveiten
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
12
|
Kossoski F, Loos PF. Seniority and Hierarchy Configuration Interaction for Radicals and Excited States. J Chem Theory Comput 2023. [PMID: 37965728 DOI: 10.1021/acs.jctc.3c00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hierarchy configuration interaction (hCI) has recently been introduced as an alternative configuration interaction (CI) route combining excitation degree and seniority number and has been shown to efficiently recover both dynamic and static correlations for closed-shell molecular systems [ J. Phys. Chem. Lett. 2022, 13, 4342]. Here we generalize hCI for an arbitrary reference determinant, allowing calculations for radicals and excited states in a state-specific way. We gauge this route against excitation-based CI (eCI) and seniority-based CI (sCI) by evaluating how different ground-state properties of radicals converge to the full CI limit. We find that hCI outperforms or matches eCI, whereas sCI is far less accurate, in line with previous observations for closed-shell molecules. Employing second-order Epstein-Nesbet (EN2) perturbation theory as a correction significantly accelerates the convergence of hCI and eCI. We further explore various hCI and sCI models to calculate the excitation energies of closed- and open-shell systems. Our results underline that the choice of both the reference determinant and the set of orbitals drives the fine balance between correlation of ground and excited states. State-specific hCI2 and higher-order models perform similarly to their eCI counterparts, whereas lower orders of hCI deliver poor results unless supplemented by the EN2 correction, which substantially improves their accuracy. In turn, sCI1 produces decent excitation energies for radicals, encouraging the development of related seniority-based coupled-cluster methods.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
13
|
Marie A, Burton HGA. Excited States, Symmetry Breaking, and Unphysical Solutions in State-Specific CASSCF Theory. J Phys Chem A 2023; 127:4538-4552. [PMID: 37141564 DOI: 10.1021/acs.jpca.3c00603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
State-specific electronic structure theory provides a route toward balanced excited-state wave functions by exploiting higher-energy stationary points of the electronic energy. Multiconfigurational wave function approximations can describe both closed- and open-shell excited states and avoid the issues associated with state-averaged approaches. We investigate the existence of higher-energy solutions in complete active space self-consistent field (CASSCF) theory and characterize their topological properties. We demonstrate that state-specific approximations can provide accurate higher-energy excited states in H2 (6-31G) with more compact active spaces than would be required in a state-averaged formalism. We then elucidate the unphysical stationary points, demonstrating that they arise from redundant orbitals when the active space is too large or symmetry breaking when the active space is too small. Furthermore, we investigate the singlet-triplet crossing in CH2 (6-31G) and the avoided crossing in LiF (6-31G), revealing the severity of root flipping and demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.
Collapse
Affiliation(s)
- Antoine Marie
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Hugh G A Burton
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
14
|
Kossoski F, Loos PF. State-Specific Configuration Interaction for Excited States. J Chem Theory Comput 2023; 19:2258-2269. [PMID: 37024102 PMCID: PMC10134430 DOI: 10.1021/acs.jctc.3c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We introduce and benchmark a systematically improvable route for excited-state calculations, labeled state-specific configuration interaction (ΔCI), which is a particular realization of multiconfigurational self-consistent field and multireference configuration interaction. Starting with a reference built from optimized configuration state functions, separate CI calculations are performed for each targeted state (hence, state-specific orbitals and determinants). Accounting for single and double excitations produces the ΔCISD model, which can be improved with second-order Epstein-Nesbet perturbation theory (ΔCISD+EN2) or a posteriori Davidson corrections (ΔCISD+Q). These models were gauged against a vast and diverse set of 294 reference excitation energies. We have found that ΔCI is significantly more accurate than standard ground-state-based CI, whereas close performances were found between ΔCISD and EOM-CC2 and between ΔCISD+EN2 and EOM-CCSD. For larger systems, ΔCISD+Q delivers more accurate results than EOM-CC2 and EOM-CCSD. The ΔCI route can handle challenging multireference problems, singly and doubly excited states, from closed- and open-shell species, with overall comparable accuracy and thus represents a promising alternative to more established methodologies. In its current form, however, it is reliable only for relatively low-lying excited states.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
15
|
Convergence of Møller–Plesset perturbation theory for excited reference states. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
16
|
Kempfer-Robertson EM, Mahler AD, Haase MN, Roe P, Thompson LM. Nonorthogonal Active Space Decomposition of Wave Functions with Multiple Correlation Mechanisms. J Phys Chem Lett 2022; 13:12041-12048. [PMID: 36541869 DOI: 10.1021/acs.jpclett.2c03349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The nonorthogonal active space decomposition (NO-ASD) methodology is proposed for describing systems containing multiple correlation mechanisms. NO-ASD partitions the wave function by a correlation mechanism, such that the interactions between different correlation mechanisms are treated with an effective Hamiltonian approach, while interactions between correlated orbitals in the same correlation mechanism are treated explicitly. As a result, the determinant expansion scales polynomially with the number of correlation mechanisms rather than exponentially, which significantly reduces the factorial scaling associated with the size of the correlated orbital space. Despite the nonorthogonal framework of NO-ASD, the approach can take advantage of computational efficient matrix element evaluation when performing nonorthogonal coupling of orthogonal determinant expansions. In this work, we introduce and examine the NO-ASD approach in comparison to complete active space methods to establish how the NO-ASD approach reduces the problem dimensionality and the extent to which it affects the amount of correlation energy recovered. Calculations are performed on ozone, nickel-acetylene, and isomers of μ-oxo dicopper ammonia.
Collapse
Affiliation(s)
| | - Andrew D Mahler
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Meagan N Haase
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Piper Roe
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| |
Collapse
|
17
|
Hanscam R, Neuscamman E. Applying Generalized Variational Principles to Excited-State-Specific Complete Active Space Self-consistent Field Theory. J Chem Theory Comput 2022; 18:6608-6621. [PMID: 36215108 DOI: 10.1021/acs.jctc.2c00639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ a generalized variational principle to improve the stability, reliability, and precision of fully excited-state-specific complete active space self-consistent field theory. Compared to previous approaches that similarly seek to tailor this ansatz's orbitals and configuration interaction expansion for an individual excited state, we find the present approach to be more resistant to root flipping and better at achieving tight convergence to an energy stationary point. Unlike state-averaging, this approach allows orbital shapes to be optimal for individual excited states, which is especially important for charge-transfer states and some doubly excited states. We demonstrate the convergence and state-targeting abilities of this method in LiH, ozone, and MgO, showing in the latter that it is capable of finding three excited-state energy stationary points that no previous method has been able to locate.
Collapse
Affiliation(s)
- Rebecca Hanscam
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Benavides-Riveros CL, Chen L, Schilling C, Mantilla S, Pittalis S. Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach. PHYSICAL REVIEW LETTERS 2022; 129:066401. [PMID: 36018631 DOI: 10.1103/physrevlett.129.066401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
State-average calculations based on a mixture of states are increasingly being exploited across chemistry and physics as versatile procedures for addressing excitations of quantum many-body systems. If not too many states should need to be addressed, calculations performed on individual states are also a common option. Here we show how the two approaches can be merged into one method, dealing with a generalized yet single pure state. Implications in electronic structure calculations are discussed and for quantum computations are pointed out.
Collapse
Affiliation(s)
- Carlos L Benavides-Riveros
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- INO-CNR BEC Center, I-38123 Trento, Italy
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Christian Schilling
- Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Sebastián Mantilla
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | | |
Collapse
|
19
|
Schmerwitz YLA, Ivanov AV, Jónsson EÖ, Jónsson H, Levi G. Variational Density Functional Calculations of Excited States: Conical Intersection and Avoided Crossing in Ethylene Bond Twisting. J Phys Chem Lett 2022; 13:3990-3999. [PMID: 35481754 DOI: 10.1021/acs.jpclett.2c00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theoretical studies of photochemical processes require a description of the energy surfaces of excited electronic states, especially near degeneracies, where transitions between states are most likely. Systems relevant to photochemical applications are typically too large for high-level multireference methods, and while time-dependent density functional theory (TDDFT) is efficient, it can fail to provide the required accuracy. A variational, time-independent density functional approach is applied to the twisting of the double bond and pyramidal distortion in ethylene, the quintessential model for photochemical studies. By allowing for symmetry breaking, the calculated energy surfaces exhibit the correct topology around the twisted-pyramidalized conical intersection even when using a semilocal functional approximation, and by including explicit self-interaction correction, the torsional energy curves are in close agreement with published multireference results. The findings of the present work point to the possibility of using a single determinant time-independent density functional approach to simulate nonadiabatic dynamics, even for large systems where multireference methods are impractical and TDDFT is often not accurate enough.
Collapse
Affiliation(s)
| | - Aleksei V Ivanov
- Science Institute of the University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Elvar Ö Jónsson
- Science Institute of the University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
- Department of Applied Physics, Aalto University, FI-00076 Espoo, Finland
| | - Gianluca Levi
- Science Institute of the University of Iceland, VR-III, 107 Reykjavík, Iceland
| |
Collapse
|