1
|
Materia D, Ratini L, Angeli C, Guidoni L. Quantum information reveals that orbital-wise correlation is essentially classical in natural orbitals. J Chem Phys 2024; 161:244108. [PMID: 39727278 DOI: 10.1063/5.0220306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The intersection of quantum chemistry and quantum computing has led to significant advancements in understanding the potential of using quantum devices for the efficient calculation of molecular energies. Simultaneously, this intersection enhances the comprehension of quantum chemical properties through the use of quantum computing and quantum information tools. This paper tackles a key question in this relationship: Is the nature of the orbital-wise electron correlations in wavefunctions of realistic prototypical cases classical or quantum? We address this question with a detailed investigation of molecular wavefunctions in terms of Shannon and von Neumann entropies, common tools of classical and quantum information theory. Our analysis reveals a notable distinction between classical and quantum mutual information in molecular systems when analyzed with Hartree-Fock canonical orbitals. However, this difference decreases dramatically, by ∼100-fold, when natural orbitals are used as reference. This finding suggests that orbital correlations, when viewed through the appropriate basis, are predominantly classical. Consequently, our study underscores the importance of using natural orbitals to accurately assess molecular orbital correlations and to avoid their overestimation.
Collapse
Affiliation(s)
- Davide Materia
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila, Italy
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Coppito, L'Aquila, Italy
| | - Leonardo Ratini
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila, Italy
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Coppito, L'Aquila, Italy
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università degli Studi di Ferrara, Ferrara, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila, Italy
| |
Collapse
|
2
|
Materia D, Ratini L, Angeli C, Guidoni L. Quantum Information Driven Ansatz (QIDA): Shallow-Depth Empirical Quantum Circuits from Quantum Chemistry. J Phys Chem A 2024; 128:8533-8543. [PMID: 39312554 DOI: 10.1021/acs.jpca.4c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hardware-efficient empirical variational ansätze for Variational Quantum Eigensolver (VQE) simulations of quantum chemistry often lack a direct connection to classical quantum chemistry methods. In this work, we propose a method to bridge this gap by introducing a novel approach to constructing a starting point for variational quantum circuits, leveraging quantum mutual information from classical quantum chemistry states to design simple yet effective heuristic ansätze with a topology reflecting the molecular system's correlations. As a first step, we make use of quantum chemistry calculations, such as Mo̷ller-Plesset (MP2) perturbation theory, to initially provide approximate Natural Orbitals, which have been shown to be the best candidate one-electron basis for developing compact empirical wave functions.1 Second, we evaluate the quantum mutual information matrix, which provides insights about the main correlations between qubits of the quantum circuit, and enables a direct design of entangling blocks for the circuit. The resulting ansatz is then used with a VQE to obtain a short-depth variational ground state of the electronic Hamiltonian. To validate our approach, we perform a comprehensive statistical analysis through simulations of various molecular systems (H2, LiH, H2O) and apply it to the more complex NH3 molecule. The reported results demonstrate that the proposed methodology gives rise to highly effective ansätze, outperforming the standard empirical ladder-entangler ansatz. Overall, our approach can be used as an effective state preparation, providing a promising route for designing efficient variational quantum circuits for large molecular systems.
Collapse
Affiliation(s)
- Davide Materia
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila 67100, Italy
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Coppito, L'Aquila 67100, Italy
| | - Leonardo Ratini
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila 67100, Italy
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Coppito, L'Aquila 67100, Italy
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università degli Studi di Ferrara, Ferrara 44121, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila 67100, Italy
| |
Collapse
|
3
|
Ratini L, Capecci C, Guidoni L. Natural Orbitals and Sparsity of Quantum Mutual Information. J Chem Theory Comput 2024; 20:3535-3542. [PMID: 38656107 DOI: 10.1021/acs.jctc.3c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Natural orbitals, defined in electronic structure and quantum chemistry as the molecular orbitals diagonalizing the one-particle reduced density matrix of the ground state, have been conjectured for decades to be the perfect reference orbitals to describe electron correlation. In the present work we applied the Wave function-Adapted Hamiltonian Through Orbital Rotation (WAHTOR) method to study correlated empirical ansätze for quantum computing. In all representative molecules considered, we show that the converged orbitals are coinciding with natural orbitals. Interestingly, the resulting quantum mutual information matrix built on such orbitals is also maximally sparse, providing a clear picture that such orbital choice is indeed able to provide the optimal basis to describe electron correlation. The correlation is therefore encoded in a smaller number of qubit pairs contributing to the quantum mutual information matrix.
Collapse
Affiliation(s)
- Leonardo Ratini
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila, 67100 Italy
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Coppito, L'Aquila, 67100 Italy
| | - Chiara Capecci
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Coppito, L'Aquila, 67100 Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila, 67100 Italy
| |
Collapse
|
4
|
Fan Y, Liu J, Li Z, Yang J. Quantum Circuit Matrix Product State Ansatz for Large-Scale Simulations of Molecules. J Chem Theory Comput 2023; 19:5407-5417. [PMID: 37503552 DOI: 10.1021/acs.jctc.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
As demonstrated in the density matrix renormalization group (DMRG) method, approximating many-body wave function of electrons using a matrix product state (MPS) is a promising way to solve electronic structure problems. The expressibility of an MPS is determined by the size of the matrices or, in other words, the bond dimension, which unfortunately may be required to be very large in quantum chemistry simulations. In this study, we propose to calculate the ground state energies of molecular systems by variationally optimizing quantum circuit MPS (QCMPS) with a relatively small number of qubits. It is demonstrated that with carefully chosen circuit structure and orbital localization scheme, QCMPS can reach a similar accuracy as that achieved in DMRG with an exponentially large bond dimension. QCMPS simulation of a linear hydrogen molecular chain with 50 orbitals can reach the chemical accuracy using only 6 qubits at a moderate circuit depth. These results suggest that QCMPS is a promising wave function ansatz in the variational quantum eigensolver algorithm for molecular systems.
Collapse
Affiliation(s)
- Yi Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
5
|
Castaldo D, Jahangiri S, Delgado A, Corni S. Quantum Simulation of Molecules in Solution. J Chem Theory Comput 2022; 18:7457-7469. [PMID: 36351289 PMCID: PMC9754316 DOI: 10.1021/acs.jctc.2c00974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Quantum chemical calculations on quantum computers have been focused mostly on simulating molecules in the gas phase. Molecules in liquid solution are, however, most relevant for chemistry. Continuum solvation models represent a good compromise between computational affordability and accuracy in describing solvation effects within a quantum chemical description of solute molecules. In this work, we extend the variational quantum eigensolver to simulate solvated systems using the polarizable continuum model. To account for the state dependent solute-solvent interaction we generalize the variational quantum eigensolver algorithm to treat non-linear molecular Hamiltonians. We show that including solvation effects does not impact the algorithmic efficiency. Numerical results of noiseless simulations for molecular systems with up to 12 spin-orbitals (qubits) are presented. Furthermore, calculations performed on a simulated noisy quantum hardware (IBM Q, Mumbai) yield computed solvation free energies in fair agreement with the classical calculations.
Collapse
Affiliation(s)
- Davide Castaldo
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via Marzolo 1, Padova35131, Italy
| | | | | | - Stefano Corni
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via Marzolo 1, Padova35131, Italy
- Istituto
Nanoscienze—CNR, via Campi 213/A, Modena41125, Italy
- Padua
Quantum Technologies Research Center, Università
di Padova, Padova35131, Italy
| |
Collapse
|