1
|
Ninot-Pedrosa M, Pálfy G, Razmazma H, Crowley J, Fogeron ML, Bersch B, Barnes A, Brutscher B, Monticelli L, Böckmann A, Meier BH, Lecoq L. NMR Structural Characterization of SARS-CoV-2 ORF6 Reveals an N-Terminal Membrane Anchor. J Am Chem Soc 2025. [PMID: 40372136 DOI: 10.1021/jacs.4c17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, encodes several accessory proteins, among which ORF6, a potent interferon inhibitor, is recognized as one of the most cytotoxic. Here, we investigated the structure, oligomeric state, and membrane interactions of ORF6 using NMR spectroscopy and molecular dynamics simulations. Using chemical-shift-ROSETTA, we show that ORF6 in proteoliposomes adopts a straight α-helical structure with an extended, rigid N-terminal part and flexible C-terminal residues. Cross-linking experiments indicate that ORF6 forms oligomers within lipid bilayers, and paramagnetic spin labeling suggests an antiparallel arrangement in its multimers. The amphipathic ORF6 helix establishes multiple contacts with the membrane surface with its N-terminal residues acting as membrane anchors. Our work demonstrates that ORF6 is an integral monotopic membrane protein and provides key insights into its conformation and the importance of the N-terminal region for the interaction with the membrane.
Collapse
Affiliation(s)
- Martí Ninot-Pedrosa
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| | - Gyula Pálfy
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Hafez Razmazma
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| | - Jackson Crowley
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| | - Beate Bersch
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, Cedex 9 38044, France
| | - Alexander Barnes
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Bernhard Brutscher
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, Cedex 9 38044, France
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS, Lyon 69367, France
| |
Collapse
|
2
|
Souza PCT, Borges-Araújo L, Brasnett C, Moreira RA, Grünewald F, Park P, Wang L, Razmazma H, Borges-Araújo AC, Cofas-Vargas LF, Monticelli L, Mera-Adasme R, Melo MN, Wu S, Marrink SJ, Poma AB, Thallmair S. GōMartini 3: From large conformational changes in proteins to environmental bias corrections. Nat Commun 2025; 16:4051. [PMID: 40307210 PMCID: PMC12043922 DOI: 10.1038/s41467-025-58719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Coarse-grained modeling has become an important tool to supplement experimental measurements, allowing access to spatio-temporal scales beyond all-atom based approaches. The GōMartini model combines structure- and physics-based coarse-grained approaches, balancing computational efficiency and accurate representation of protein dynamics with the capabilities of studying proteins in different biological environments. This paper introduces an enhanced GōMartini model, which combines a virtual-site implementation of Gō models with Martini 3. The implementation has been extensively tested by the community since the release of the reparametrized version of Martini. This work demonstrates the capabilities of the model in diverse case studies, ranging from protein-membrane binding to protein-ligand interactions and AFM force profile calculations. The model is also versatile, as it can address recent inaccuracies reported in the Martini protein model. Lastly, the paper discusses the advantages, limitations, and future perspectives of the Martini 3 protein model and its combination with Gō models.
Collapse
Affiliation(s)
- Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Rodrigo A Moreira
- NEIKER, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, Spain
| | - Fabian Grünewald
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Peter Park
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Hafez Razmazma
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Luis Fernando Cofas-Vargas
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
| | - Raúl Mera-Adasme
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Sangwook Wu
- PharmCADD, Busan, Republic of Korea
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands.
| | - Adolfo B Poma
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland.
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Lee S, Le Roux AL, Mors M, Vanni S, Roca‑Cusachs P, Bahmanyar S. Amphipathic helices sense the inner nuclear membrane environment through lipid packing defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623600. [PMID: 39605395 PMCID: PMC11601446 DOI: 10.1101/2024.11.14.623600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Amphipathic helices (AHs) are ubiquitous protein motifs that modulate targeting to organellar membranes by sensing differences in bulk membrane properties. However, the adaptation between membrane-targeting AHs and the nuclear membrane environment that surrounds the genome is poorly understood. Here, we computationally screened for candidate AHs in a curated list of characterized and putative human inner nuclear membrane (INM) proteins. Cell biological and in vitro experimental assays combined with computational calculations demonstrated that AHs detect lipid packing defects over electrostatics to bind to the INM, indicating that the INM is loosely packed under basal conditions. Membrane tension resulting from hypotonic shock further promoted AH binding to the INM, whereas cell-substrate stretch did not enhance recruitment of membrane tension-sensitive AHs. Together, our work demonstrates the rules driving lipid-protein interactions at the INM, and its implications in the response of the nucleus to different stimuli.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, 260 Whitney Ave, Yale Science Building 116, New Haven, CT 06511, USA
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Mira Mors
- Department of Biology, University of Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Pere Roca‑Cusachs
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, 260 Whitney Ave, Yale Science Building 116, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Conde-Torres D, Calvelo M, Rovira C, Piñeiro Á, Garcia-Fandino R. Unlocking the specificity of antimicrobial peptide interactions for membrane-targeted therapies. Comput Struct Biotechnol J 2024; 25:61-74. [PMID: 38695015 PMCID: PMC11061258 DOI: 10.1016/j.csbj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) are increasingly recognized as potent therapeutic agents, with their selective affinity for pathological membranes, low toxicity profile, and minimal resistance development making them particularly attractive in the pharmaceutical landscape. This study offers a comprehensive analysis of the interaction between specific AMPs, including magainin-2, pleurocidin, CM15, LL37, and clavanin, with lipid bilayer models of very different compositions that have been ordinarily used as biological membrane models of healthy mammal, cancerous, and bacterial cells. Employing unbiased molecular dynamics simulations and metadynamics techniques, we have deciphered the intricate mechanisms by which these peptides recognize pathogenic and pathologic lipid patterns and integrate into lipid assemblies. Our findings reveal that the transverse component of the peptide's hydrophobic dipole moment is critical for membrane interaction, decisively influencing the molecule's orientation and expected therapeutic efficacy. Our approach also provides insight on the kinetic and dynamic dependence on the peptide orientation in the axial and azimuthal angles when coming close to the membrane. The aim is to establish a robust framework for the rational design of peptide-based, membrane-targeted therapies, as well as effective quantitative descriptors that can facilitate the automated design of novel AMPs for these therapies using machine learning methods.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Carme Rovira
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Domanska M, Setny P. Exploring the Properties of Curved Lipid Membranes: Comparative Analysis of Atomistic and Coarse-Grained Force Fields. J Phys Chem B 2024; 128:7160-7171. [PMID: 38990314 DOI: 10.1021/acs.jpcb.4c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Curvature emerges as a fundamental membrane characteristic crucial for diverse biological processes, including vesicle formation, cell signaling, and membrane trafficking. Increasingly valuable insights into atomistic details governing curvature-dependent membrane properties are provided by computer simulations. Nevertheless, the underlying force field models are conventionally calibrated and tested in relation to experimentally derived parameters of planar bilayers, thereby leaving uncertainties concerning their consistency in reproducing curved lipid systems. In this study we compare the depiction of buckled phosphatidylcholine (POPC) and POPC-cholesterol membranes by four popular force field models. Aside from agreement with respect to general trends in curvature dependence of a number of parameters, we observe a few qualitative differences. Among the most prominent ones is the difference between atomistic and coarse grained force fields in their representation of relative compressibility of the polar headgroup region and hydrophobic lipid core. Through a number of downstream effects, this discrepancy can influence the way in which curvature modulates the behavior of membrane bound proteins depending on the adopted simulation model.
Collapse
Affiliation(s)
- Maria Domanska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Peñalva DA, Monnappa AK, Natale P, López-Montero I. Mfn2-dependent fusion pathway of PE-enriched micron-sized vesicles. Proc Natl Acad Sci U S A 2024; 121:e2313609121. [PMID: 39012824 PMCID: PMC11287154 DOI: 10.1073/pnas.2313609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.
Collapse
Affiliation(s)
- Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
| | - Ajay K. Monnappa
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
| | - Paolo Natale
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| |
Collapse
|
7
|
van der Pol RI, Brinkmann BW, Sevink GJA. Analyzing Lipid Membrane Defects via a Coarse-Grained to Triangulated Surface Map: The Role of Lipid Order and Local Curvature in Molecular Binding. J Chem Theory Comput 2024; 20:2888-2900. [PMID: 38537131 PMCID: PMC11008102 DOI: 10.1021/acs.jctc.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Lipid packing defects are known to serve as quantitative indicators for protein binding to lipid membranes. This paper presents a protocol for mapping molecular lipid detail onto a triangulated continuum leaflet representation. Besides establishing the desired forward counterpart to the existing inverse TS2CG map, this coarse-grained to triangulated surface (CG2TS) map enables straightforward extraction of the defect characteristics for any membrane geometry found in nature. We have applied our protocol to investigate the role of local curvature and varying lipid packing on the defect constant π. We find that the defect size is greatly influenced by both factors, arguing strongly against the usual assignment of a single defect constant in the case of more realistic membrane conditions. An important discovery is that lipids in the gel phase produce larger defects, or a higher π, in domains of high (local) curvature than the same lipid in a liquid phase of any curvature. This finding suggests that membranes featuring very ordered lipid packing can bind proteins via large defects in curved regions. Finally, we propose a route for estimating defect constants directly from the standard membrane properties. Identifying the precise role of composition, lipid (tail) order, and (local) curvature in defects for the irregular lipid structures that are (temporally) present in many biological processes is instrumental for obtaining fundamental insight as well as for a rational design of membrane binding targets.
Collapse
Affiliation(s)
- Rianne
W. I. van der Pol
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bregje W. Brinkmann
- Institute
of Environmental Sciences, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Methorst J, van Hilten N, Hoti A, Stroh KS, Risselada HJ. When Data Are Lacking: Physics-Based Inverse Design of Biopolymers Interacting with Complex, Fluid Phases. J Chem Theory Comput 2024; 20:1763-1776. [PMID: 38413010 PMCID: PMC10938504 DOI: 10.1021/acs.jctc.3c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Biomolecular research traditionally revolves around comprehending the mechanisms through which peptides or proteins facilitate specific functions, often driven by their relevance to clinical ailments. This conventional approach assumes that unraveling mechanisms is a prerequisite for wielding control over functionality, which stands as the ultimate research goal. However, an alternative perspective emerges from physics-based inverse design, shifting the focus from mechanisms to the direct acquisition of functional control strategies. By embracing this methodology, we can uncover solutions that might not have direct parallels in natural systems, yet yield crucial insights into the isolated molecular elements dictating functionality. This provides a distinctive comprehension of the underlying mechanisms.In this context, we elucidate how physics-based inverse design, facilitated by evolutionary algorithms and coarse-grained molecular simulations, charts a promising course for innovating the reverse engineering of biopolymers interacting with intricate fluid phases such as lipid membranes and liquid protein phases. We introduce evolutionary molecular dynamics (Evo-MD) simulations, an approach that merges evolutionary algorithms with the Martini coarse-grained force field. This method directs the evolutionary process from random amino acid sequences toward peptides interacting with complex fluid phases such as biological lipid membranes, offering significant promises in the development of peptide-based sensors and drugs. This approach can be tailored to recognize or selectively target specific attributes such as membrane curvature, lipid composition, membrane phase (e.g., lipid rafts), and protein fluid phases. Although the resulting optimal solutions may not perfectly align with biological norms, physics-based inverse design excels at isolating relevant physicochemical principles and thermodynamic driving forces governing optimal biopolymer interaction within complex fluidic environments. In addition, we expound upon how physics-based evolution using the Evo-MD approach can be harnessed to extract the evolutionary optimization fingerprints of protein-lipid interactions from native proteins. Finally, we outline how such an approach is uniquely able to generate strategic training data for predictive neural network models that cover the whole relevant physicochemical domain. Exploring challenges, we address key considerations such as choosing a fitting fitness function to delineate the desired functionality. Additionally, we scrutinize assumptions tied to system setup, the targeted protein structure, and limitations posed by the utilized (coarse-grained) force fields and explore potential strategies for guiding evolution with limited experimental data. This discourse encapsulates the potential and remaining obstacles of physics-based inverse design, paving the way for an exciting frontier in biomolecular research.
Collapse
Affiliation(s)
- Jeroen Methorst
- Leiden
Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
- Department
of Physics, Technische Universität
Dortmund, 44227 Dortmund, Germany
| | - Niek van Hilten
- Leiden
Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Art Hoti
- Leiden
Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Kai Steffen Stroh
- Department
of Physics, Technische Universität
Dortmund, 44227 Dortmund, Germany
| | - Herre Jelger Risselada
- Leiden
Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
- Department
of Physics, Technische Universität
Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
9
|
Papadopoulou P, van der Pol R, van Hilten N, van Os WL, Pattipeiluhu R, Arias-Alpizar G, Knol RA, Noteborn W, Moradi MA, Ferraz MJ, Aerts JMFG, Sommerdijk N, Campbell F, Risselada HJ, Sevink GJA, Kros A. Phase-Separated Lipid-Based Nanoparticles: Selective Behavior at the Nano-Bio Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310872. [PMID: 37988682 DOI: 10.1002/adma.202310872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 11/23/2023]
Abstract
The membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases. This exemplified how liposome morphology and composition can determine nanoparticle-protein interactions. Here, the lipase-induced compositional and morphological changes of phase-separated liposomes-which bear a lipid droplet in their bilayer- are investigated, and the mechanism upon which lipases recognize and bind to the particles is unravelled. The selective lipolytic degradation of the phase-separated lipid droplet is observed, while nanoparticle integrity remains intact. Next, the Tryptophan-rich loop of the lipase is identified as the region with which the enzymes bind to the particles. This preferential binding is due to lipid packing defects induced on the liposome surface by phase separation. In parallel, the existing knowledge that phase separation leads to in vivo selectivity, is utilized to generate phase-separated mRNA-LNPs that target cell-subsets in zebrafish embryos, with subsequent mRNA delivery and protein expression. Together, these findings can expand the current knowledge on selective nanoparticle-protein communications and in vivo behavior, aspects that will assist to gain control of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Rianne van der Pol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Niek van Hilten
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Winant L van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Gabriela Arias-Alpizar
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Renzo Aron Knol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Willem Noteborn
- NeCEN, Leiden University, Einsteinweg 55, Leiden, 2333 AL, The Netherlands
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Maria Joao Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | | | - Nico Sommerdijk
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Medical BioSciences and Radboud Technology Center - Electron Microscopy, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Herre Jelger Risselada
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
- Department of Physics, Technical University Dortmund, 44221, Dortmund, Germany
| | - Geert Jan Agur Sevink
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| |
Collapse
|
10
|
van Hilten N, Verwei N, Methorst J, Nase C, Bernatavicius A, Risselada HJ. PMIpred: a physics-informed web server for quantitative protein-membrane interaction prediction. Bioinformatics 2024; 40:btae069. [PMID: 38317055 PMCID: PMC11212490 DOI: 10.1093/bioinformatics/btae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
MOTIVATION Many membrane peripheral proteins have evolved to transiently interact with the surface of (curved) lipid bilayers. Currently, methods to quantitatively predict sensing and binding free energies for protein sequences or structures are lacking, and such tools could greatly benefit the discovery of membrane-interacting motifs, as well as their de novo design. RESULTS Here, we trained a transformer neural network model on molecular dynamics data for >50 000 peptides that is able to accurately predict the (relative) membrane-binding free energy for any given amino acid sequence. Using this information, our physics-informed model is able to classify a peptide's membrane-associative activity as either non-binding, curvature sensing, or membrane binding. Moreover, this method can be applied to detect membrane-interaction regions in a wide variety of proteins, with comparable predictive performance as state-of-the-art data-driven tools like DREAMM, PPM3, and MODA, but with a wider applicability regarding protein diversity, and the added feature to distinguish curvature sensing from general membrane binding. AVAILABILITY AND IMPLEMENTATION We made these tools available as a web server, coined Protein-Membrane Interaction predictor (PMIpred), which can be accessed at https://pmipred.fkt.physik.tu-dortmund.de.
Collapse
Affiliation(s)
- Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Nino Verwei
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Jeroen Methorst
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Carsten Nase
- Department of Physics, Technical University Dortmund, Dortmund 44227, Germany
| | - Andrius Bernatavicius
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden 2333 CA, Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Department of Physics, Technical University Dortmund, Dortmund 44227, Germany
| |
Collapse
|
11
|
Degen M, Santos JC, Pluhackova K, Cebrero G, Ramos S, Jankevicius G, Hartenian E, Guillerm U, Mari SA, Kohl B, Müller DJ, Schanda P, Maier T, Perez C, Sieben C, Broz P, Hiller S. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 2023; 618:1065-1071. [PMID: 37198476 PMCID: PMC10307626 DOI: 10.1038/s41586-023-05991-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/21/2023] [Indexed: 05/19/2023]
Abstract
Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.
Collapse
Affiliation(s)
- Morris Degen
- Biozentrum, University of Basel, Basel, Switzerland
| | - José Carlos Santos
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Stuttgart, Germany.
| | | | - Saray Ramos
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Ella Hartenian
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Undina Guillerm
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Bastian Kohl
- Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Paul Schanda
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
12
|
John LH, Naughton FB, Sansom MSP, Larsen AH. The Role of C2 Domains in Two Different Phosphatases: PTEN and SHIP2. MEMBRANES 2023; 13:408. [PMID: 37103835 PMCID: PMC10146288 DOI: 10.3390/membranes13040408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Phosphatase and tensin homologue (PTEN) and SH2-containing inositol 5'-phosphatase 2 (SHIP2) are structurally and functionally similar. They both consist of a phosphatase (Ptase) domain and an adjacent C2 domain, and both proteins dephosphorylate phosphoinositol-tri(3,4,5)phosphate, PI(3,4,5)P3; PTEN at the 3-phophate and SHIP2 at the 5-phosphate. Therefore, they play pivotal roles in the PI3K/Akt pathway. Here, we investigate the role of the C2 domain in membrane interactions of PTEN and SHIP2, using molecular dynamics simulations and free energy calculations. It is generally accepted that for PTEN, the C2 domain interacts strongly with anionic lipids and therefore significantly contributes to membrane recruitment. In contrast, for the C2 domain in SHIP2, we previously found much weaker binding affinity for anionic membranes. Our simulations confirm the membrane anchor role of the C2 domain in PTEN, as well as its necessity for the Ptase domain in gaining its productive membrane-binding conformation. In contrast, we identified that the C2 domain in SHIP2 undertakes neither of these roles, which are generally proposed for C2 domains. Our data support a model in which the main role of the C2 domain in SHIP2 is to introduce allosteric interdomain changes that enhance catalytic activity of the Ptase domain.
Collapse
Affiliation(s)
- Laura H. John
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fiona B. Naughton
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Andreas Haahr Larsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
van Hilten N, Methorst J, Verwei N, Risselada HJ. Physics-based generative model of curvature sensing peptides; distinguishing sensors from binders. SCIENCE ADVANCES 2023; 9:eade8839. [PMID: 36930719 PMCID: PMC10022891 DOI: 10.1126/sciadv.ade8839] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Proteins can specifically bind to curved membranes through curvature-induced hydrophobic lipid packing defects. The chemical diversity among such curvature "sensors" challenges our understanding of how they differ from general membrane "binders" that bind without curvature selectivity. Here, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations (Evo-MD) to resolve the peptide sequences that optimally recognize the curvature of lipid membranes. We subsequently demonstrate how a synergy between Evo-MD and a neural network (NN) can enhance the identification and discovery of curvature sensing peptides and proteins. To this aim, we benchmark a physics-trained NN model against experimental data and show that we can correctly identify known sensors and binders. We illustrate that sensing and binding are phenomena that lie on the same thermodynamic continuum, with only subtle but explainable differences in membrane binding free energy, consistent with the serendipitous discovery of sensors.
Collapse
Affiliation(s)
- Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, Netherlands
| | - Jeroen Methorst
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, Netherlands
| | - Nino Verwei
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, Netherlands
- Department of Physics, Technical University Dortmund, Otto-Hahn-Strasse 4, Dortmund, 44227, Germany
- Institute of Theoretical Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| |
Collapse
|