1
|
Yu J, Li J, Zhu T, Yang W. Accurate and efficient prediction of double excitation energies using the particle-particle random phase approximation. J Chem Phys 2025; 162:094101. [PMID: 40029080 DOI: 10.1063/5.0251418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
Double excitations are crucial to understanding numerous chemical, physical, and biological processes, but accurately predicting them remains a challenge. In this work, we explore the particle-particle random phase approximation (ppRPA) as an efficient and accurate approach for computing double excitation energies. We benchmark ppRPA using various exchange-correlation functionals for 21 molecular systems and two point defect systems. Our results show that ppRPA with functionals containing appropriate amounts of exact exchange provides accuracy comparable to high-level wave function methods such as CCSDT and CASPT2, with significantly reduced computational cost. Furthermore, we demonstrate the use of ppRPA starting from an excited (N - 2)-electron state calculated by ΔSCF for the first time, as well as its application to double excitations in bulk periodic systems. These findings suggest that ppRPA is a promising tool for the efficient calculation of double and partial double excitation energies in both molecular and bulk systems.
Collapse
Affiliation(s)
- Jincheng Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiachen Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Tianyu Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
2
|
Song Y, Zhang N, Lei Y, Guo Y, Liu W. QUEST#4X: An Extension of QUEST#4 for Benchmarking Multireference Wave Function Methods. J Chem Theory Comput 2025; 21:1119-1135. [PMID: 39874298 DOI: 10.1021/acs.jctc.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 (J. Chem. Theory Comput. 2020, 16, 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively. It is found that SDSCI is very close in accuracy to internally contracted multireference configuration interaction with singles and doubles (ic-MRCISD), although its computational cost is just that of one iteration of the latter. Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and performs similarly to multistate n-electron valence second-order perturbation theory (MS-NEVPT2). These findings put SDSCI and SDSPT2 on a firm basis.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Ning Zhang
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yang Guo
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Michalak P, Lesiuk M. Rank-Reduced Equation-of-Motion Coupled Cluster Triples: an Accurate and Affordable Way of Calculating Electronic Excitation Energies. J Chem Theory Comput 2024; 20:8970-8983. [PMID: 39347964 PMCID: PMC11500429 DOI: 10.1021/acs.jctc.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
In the present work, we report an implementation of the rank-reduced equation-of-motion coupled cluster method with approximate triple excitations (RR-EOM-CC3). The proposed variant relies on tensor decomposition techniques in order to alleviate the high cost of computing and manipulating the triply excited amplitudes. In the RR-EOM-CC3 method, both ground-state and excited-state triple-excitation amplitudes are compressed according to the Tucker-3 format. This enables factorization of the working equations such that the formal scaling of the method is reduced to N6, where N is the system size. An additional advantage of our method is the fact that the accuracy can be strictly controlled by proper choice of two parameters defining sizes of triple-excitation subspaces in the Tucker decomposition for the ground and excited states. Optimal strategies of selecting these parameters are discussed. The developed method has been tested in a series of calculations of electronic excitation energies and compared to its canonical EOM-CC3 counterpart. Errors several times smaller than the inherent error of the canonical EOM-CC3 method (in comparison to FCI) are straightforward to achieve. This conclusion holds both for valence states dominated by single excitations and for states with pronounced doubly excited character. Taking advantage of the decreased scaling, we demonstrate substantial computational costs reductions (in comparison with the canonical EOM-CC3) in the case of two large molecules - l-proline and heptazine. This illustrates the usefulness of the RR-EOM-CC3 method for accurate determination of excitation energies of large molecules.
Collapse
Affiliation(s)
- Piotr Michalak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
4
|
Knysh I, Lipparini F, Blondel A, Duchemin I, Blase X, Loos PF, Jacquemin D. Reference CC3 Excitation Energies for Organic Chromophores: Benchmarking TD-DFT, BSE/ GW, and Wave Function Methods. J Chem Theory Comput 2024. [PMID: 39237472 DOI: 10.1021/acs.jctc.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To expand the QUEST database of highly accurate vertical transition energies, we consider a series of large organic chromogens ubiquitous in dye chemistry, such as anthraquinone, azobenzene, BODIPY, and naphthalimide. We compute, at the CC3 level of theory, the singlet and triplet vertical transition energies associated with the low-lying excited states. This leads to a collection of more than 120 new highly accurate excitation energies. For several singlet transitions, we have been able to determine CCSDT transition energies with a compact basis set, finding minimal deviations from the CC3 values for most states. Subsequently, we employ these reference values to benchmark a series of lower-order wave function approaches, including the popular ADC(2) and CC2 schemes, as well as time-dependent density-functional theory (TD-DFT), both with and without applying the Tamm-Dancoff approximation (TDA). At the TD-DFT level, we evaluate a large panel of global, range-separated, local, and double hybrid functionals. Additionally, we assess the performance of the Bethe-Salpeter equation (BSE) formalism relying on both G0W0 and evGW quasiparticle energies evaluated from various starting points. It turns out that CC2 and ADC(2.5) are the most accurate models among those with respective O ( N 5 ) and O ( N 6 ) scalings with system size. In contrast, CCSD does not outperform CC2. The best performing exchange-correlation functionals include BMK, M06-2X, M06-SX, CAM-B3LYP, ωB97X-D, and LH20t, with average deviations of approximately 0.20 eV or slightly below. Errors on vertical excitation energies can be further reduced by considering double hybrids. Both SOS-ωB88PP86 and SOS-ωPBEPP86 exhibit particularly attractive performances with overall quality on par with CC2, whereas PBE0-DH and PBE-QIDH are only slightly less efficient. BSE/evGW calculations based on Kohn-Sham starting points have been found to be particularly effective for singlet transitions, but much less for their triplet counterparts.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Aymeric Blondel
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
5
|
Pfau D, Axelrod S, Sutterud H, von Glehn I, Spencer JS. Accurate computation of quantum excited states with neural networks. Science 2024; 385:eadn0137. [PMID: 39172822 DOI: 10.1126/science.adn0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/24/2024]
Abstract
We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.
Collapse
Affiliation(s)
- David Pfau
- Google DeepMind, London N1C 4DJ, UK
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Simon Axelrod
- Google DeepMind, London N1C 4DJ, UK
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 01238, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Halvard Sutterud
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
6
|
Loos PF, Jacquemin D. A mountaineering strategy to excited states: Accurate vertical transition energies and benchmarks for substituted benzenes. J Comput Chem 2024; 45:1791-1805. [PMID: 38661240 DOI: 10.1002/jcc.27358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/26/2024]
Abstract
In an effort to expand the existing QUEST database of accurate vertical transition energies [Véril et al. WIREs Comput. Mol. Sci. 2021, 11, e1517], we have modeled more than 100 electronic excited states of different natures (local, charge-transfer, Rydberg, singlet, and triplet) in a dozen of mono- and di-substituted benzenes, including aniline, benzonitrile, chlorobenzene, fluorobenzene, nitrobenzene, among others. To establish theoretical best estimates for these vertical excitation energies, we have employed advanced coupled-cluster methods including iterative triples (CC3 and CCSDT) and, when technically possible, iterative quadruples (CC4). These high-level computational approaches provide a robust foundation for benchmarking a series of popular wave function methods. The evaluated methods all include contributions from double excitations (ADC(2), CC2, CCSD, CIS(D), EOM-MP2, STEOM-CCSD), along with schemes that also incorporate perturbative or iterative triples (ADC(3), CCSDR(3), CCSD(T)(a) ⋆ , and CCSDT-3). This systematic exploration not only broadens the scope of the QUEST database but also facilitates a rigorous assessment of different theoretical approaches in the framework of a homologous chemical series, offering valuable insights into the accuracy and reliability of these methods in such cases. We found that both ADC(2.5) and CCSDT-3 can provide very consistent estimates, whereas among less expensive methods SCS-CC2 is likely the most effective approach. Importantly, we show that some lower order methods may offer reasonable trends in the homologous series while providing quite large average errors, and vice versa. Consequently, benchmarking the accuracy of a model based solely on absolute transition energies may not be meaningful for applications involving a series of similar compounds.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Glebov IO, Poddubnyy VV, Khokhlov D. Perturbation theory in the complete degenerate active space (CDAS-PT2). J Chem Phys 2024; 161:024114. [PMID: 38995081 DOI: 10.1063/5.0211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Methods based on the multireference perturbation theory (MRPT) with the one-electron zeroth-order Hamiltonian are widely used for the description of excited states, for example, due to their relatively low computational cost. However, current methods have a common drawback-use of a model space with low size. In this article, we propose the MRPT method with the model space extended to the complete active space. The one-electron zeroth-order Hamiltonian suitable for this extension is formulated. The proposed method was applied to common models, such as LiF, ethylene, and trans-butadiene. It was shown to have accuracy superior to XMCQDPT2 in most cases, especially in the case of the small active space.
Collapse
Affiliation(s)
- Ilya O Glebov
- Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir V Poddubnyy
- Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | | |
Collapse
|
8
|
Kossoski F, Boggio-Pasqua M, Loos PF, Jacquemin D. Reference Energies for Double Excitations: Improvement and Extension. J Chem Theory Comput 2024; 20:5655-5678. [PMID: 38885174 DOI: 10.1021/acs.jctc.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In the realm of photochemistry, the significance of double excitations (also known as doubly excited states), where two electrons are concurrently elevated to higher energy levels, lies in their involvement in key electronic transitions essential in light-induced chemical reactions as well as their challenging nature from the computational theoretical chemistry point of view. Based on state-of-the-art electronic structure methods (such as high-order coupled-cluster, selected configuration interaction, and multiconfigurational methods), we improve and expand our prior set of accurate reference excitation energies for electronic states exhibiting a substantial amount of double excitations [Loos et al. J. Chem. Theory Comput. 2019, 15, 1939]. This extended collection encompasses 47 electronic transitions across 26 molecular systems that we separate into two distinct subsets: (i) 28 "genuine" doubly excited states where the transitions almost exclusively involve doubly excited configurations and (ii) 19 "partial" doubly excited states which exhibit a more balanced character between singly and doubly excited configurations. For each subset, we assess the performance of high-order coupled-cluster (CC3, CCSDT, CC4, and CCSDTQ) and multiconfigurational methods (CASPT2, CASPT3, PC-NEVPT2, and SC-NEVPT2). Using as a probe the percentage of single excitations involved in a given transition (%T1) computed at the CC3 level, we also propose a simple correction that reduces the errors of CC3 by a factor of 3, for both sets of excitations. We hope that this more complete and diverse compilation of double excitations will help future developments of electronic excited-state methodologies.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
9
|
Marie A, Loos PF. Reference Energies for Valence Ionizations and Satellite Transitions. J Chem Theory Comput 2024; 20:4751-4777. [PMID: 38776293 PMCID: PMC11171335 DOI: 10.1021/acs.jctc.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
Upon ionization of an atom or a molecule, another electron (or more) can be simultaneously excited. These concurrently generated states are called "satellites" (or shakeup transitions) as they appear in ionization spectra as higher-energy peaks with weaker intensity and larger width than the main peaks associated with single-particle ionizations. Satellites, which correspond to electronically excited states of the cationic species, are notoriously challenging to model using conventional single-reference methods due to their high excitation degree compared to the neutral reference state. This work reports 42 satellite transition energies and 58 valence ionization potentials (IPs) of full configuration interaction quality computed in small molecular systems. Following the protocol developed for the quest database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; and Loos, P.-F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1517], these reference energies are computed using the configuration interaction using a perturbative selection made iteratively (CIPSI) method. In addition, the accuracy of the well-known coupled-cluster (CC) hierarchy (CC2, CCSD, CC3, CCSDT, CC4, and CCSDTQ) is gauged against these new accurate references. The performances of various approximations based on many-body Green's functions (GW, GF2, and T-matrix) for IPs are also analyzed. Their limitations in correctly modeling satellite transitions are discussed.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et Physique
Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique
Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
10
|
Jensen PWK, Kjellgren ER, Reinholdt P, Ziems KM, Coriani S, Kongsted J, Sauer SPA. Quantum Equation of Motion with Orbital Optimization for Computing Molecular Properties in Near-Term Quantum Computing. J Chem Theory Comput 2024; 20:3613-3625. [PMID: 38701352 DOI: 10.1021/acs.jctc.4c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Determining the properties of molecules and materials is one of the premier applications of quantum computing. A major question in the field is how to use imperfect near-term quantum computers to solve problems of practical value. Inspired by the recently developed variants of the quantum counterpart of the equation-of-motion (qEOM) approach and the orbital-optimized variational quantum eigensolver (oo-VQE), we present a quantum algorithm (oo-VQE-qEOM) for the calculation of molecular properties by computing expectation values on a quantum computer. We perform noise-free quantum simulations of BeH2 in the series of STO-3G/6-31G/6-31G* basis sets and of H4 and H2O in 6-31G using an active space of four electrons and four spatial orbitals (8 qubits) to evaluate excitation energies, electronic absorption, and, for twisted H4, circular dichroism spectra. We demonstrate that the proposed algorithm can reproduce the results of conventional classical CASSCF calculations for these molecular systems.
Collapse
Affiliation(s)
- Phillip W K Jensen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Karl Michael Ziems
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Loos PF, Lipparini F, Jacquemin D. Heptazine, Cyclazine, and Related Compounds: Chemically-Accurate Estimates of the Inverted Singlet-Triplet Gap. J Phys Chem Lett 2023; 14:11069-11075. [PMID: 38048474 DOI: 10.1021/acs.jpclett.3c03042] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Molecules that violate Hund's rule and exhibit an inverted gap between the lowest singlet S1 and triplet T1 excited states have attracted considerable attention due to their potential applications in optoelectronics. Among these molecules, the triangular-shaped heptazine, and its derivatives, have been in the limelight. However, conflicting reports have arisen regarding the relative energies of S1 and T1. Here, we employ highly accurate levels of theory, such as CC3, to not only resolve the debate concerning the sign but also quantify the magnitude of the S1-T1 gap. We also determined the 0-0 energies to evaluate the significance of the vertical approximation. In addition, we compute reference S1-T1 gaps for a series of 10 related molecules. This enables us to benchmark lower-order methods for future applications in larger systems within the same family of compounds. This contribution can serve as a foundation for the design of triangular-shaped molecules with enhanced photophysical properties.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
12
|
Jacquemin D, Kossoski F, Gam F, Boggio-Pasqua M, Loos PF. Reference Vertical Excitation Energies for Transition Metal Compounds. J Chem Theory Comput 2023. [PMID: 37965941 DOI: 10.1021/acs.jctc.3c01080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
To enrich and enhance the diversity of the quest database of highly accurate excitation energies [Véril, M.; et al. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1517], we report vertical transition energies in transition metal compounds. Eleven diatomic molecules with a singlet or doublet ground state containing a fourth-row transition metal (CuCl, CuF, CuH, ScF, ScH, ScO, ScS, TiN, ZnH, ZnO, and ZnS) are considered, and the corresponding excitation energies are computed using high-level coupled-cluster (CC) methods, namely, CC3, CCSDT, CC4, and CCSDTQ, as well as multiconfigurational methods such as CASPT2 and NEVPT2. In many cases, to provide more comprehensive benchmark data, we also provide full configuration interaction estimates computed with the configuration interaction using a perturbative selection made iteratively (CIPSI) method. Based on these calculations, theoretical best estimates of the transition energies are established in both the aug-cc-pVDZ and aug-cc-pVTZ basis sets. This allows us to accurately assess the performance of the CC and multiconfigurational methods for this specific set of challenging transitions. Furthermore, comparisons with experimental data and previous theoretical results are also reported.
Collapse
Affiliation(s)
- Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Franck Gam
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
13
|
Zhu H, Zhao R, Lu Y, Liu M, Zhang J, Gao J. Leveling the Mountain Range of Excited-State Benchmarking through Multistate Density Functional Theory. J Phys Chem A 2023; 127:8473-8485. [PMID: 37768927 DOI: 10.1021/acs.jpca.3c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The performance of multistate density functional theory (MSDFT) with nonorthogonal state interaction (NOSI) is assessed for 100 vertical excitation energies against the theoretical best estimates extracted to the full configuration interaction accuracy on the database developed by Loos et al. in 2018 (Loos2018). Two optimization techniques, namely, block-localized excitation and target state optimization, are examined along with two ways of estimating the transition density functional (TDF) for the correlation energy of the Hamiltonian matrix density functional. The results from the two optimization methods are similar. It was found that MSDFT-NOSI using the spin-multiplet degeneracy constraint for the TDF of spin-coupling interaction, along with the M06-2X functional, yields a root-mean-square error (RMSE) of 0.22 eV, which performs noticeably better than time-dependent density functional theory (DFT) at an RMSE of 0.43 eV using the same functional and basis set on the Loos2018 database. In comparison with wave function theory, NOSI has smaller errors than CIS(D∞), LR-CC2, and ADC(3) all of which have an RMSE of 0.28 eV, but somewhat greater than STEOM-CCSD (RMSE of 0.14 eV) and LR-CCSD (RMSE of 0.11 eV) wave function methods. In comparison with Kohn-Sham (KS) DFT calculations, the multistate DFT approach has little double counting of correlation. Importantly, there is no noticeable difference in the performance of MSDFT-NOSI on the valence, Rydberg, singlet, triplet, and double-excitation states. Although the use of another hybrid functional PBE0 leads to a greater RMSE of 0.36 eV, the deviation is systematic with a linear regression slope of 0.994 against the results with M06-2X. The present benchmark reveals that density functional approximations developed for KS-DFT for the ground state with a noninteracting reference may be adopted in MSDFT calculations in which the state interaction is key.
Collapse
Affiliation(s)
- Hong Zhu
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Ruoqi Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yangyi Lu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Meiyi Liu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Jiali Gao
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Kossoski F, Loos PF. State-Specific Configuration Interaction for Excited States. J Chem Theory Comput 2023; 19:2258-2269. [PMID: 37024102 PMCID: PMC10134430 DOI: 10.1021/acs.jctc.3c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We introduce and benchmark a systematically improvable route for excited-state calculations, labeled state-specific configuration interaction (ΔCI), which is a particular realization of multiconfigurational self-consistent field and multireference configuration interaction. Starting with a reference built from optimized configuration state functions, separate CI calculations are performed for each targeted state (hence, state-specific orbitals and determinants). Accounting for single and double excitations produces the ΔCISD model, which can be improved with second-order Epstein-Nesbet perturbation theory (ΔCISD+EN2) or a posteriori Davidson corrections (ΔCISD+Q). These models were gauged against a vast and diverse set of 294 reference excitation energies. We have found that ΔCI is significantly more accurate than standard ground-state-based CI, whereas close performances were found between ΔCISD and EOM-CC2 and between ΔCISD+EN2 and EOM-CCSD. For larger systems, ΔCISD+Q delivers more accurate results than EOM-CC2 and EOM-CCSD. The ΔCI route can handle challenging multireference problems, singly and doubly excited states, from closed- and open-shell species, with overall comparable accuracy and thus represents a promising alternative to more established methodologies. In its current form, however, it is reliable only for relatively low-lying excited states.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
15
|
Zhang J, Tang Z, Zhang X, Zhu H, Zhao R, Lu Y, Gao J. Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States. J Chem Theory Comput 2023; 19:1777-1789. [PMID: 36917687 DOI: 10.1021/acs.jctc.2c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A flexible self-consistent field method, called target state optimization (TSO), is presented for exploring electronic excited configurations and localized diabatic states. The key idea is to partition molecular orbitals into different subspaces according to the excitation or localization pattern for a target state. Because of the orbital-subspace constraint, orbitals belonging to different subspaces do not mix. Furthermore, the determinant wave function for such excited or diabatic configurations can be variationally optimized as a ground state procedure, unlike conventional ΔSCF methods, without the possibility of collapsing back to the ground state or other lower-energy configurations. The TSO method can be applied both in Hartree-Fock theory and in Kohn-Sham density functional theory (DFT). The density projection procedure and the working equations for implementing the TSO method are described along with several illustrative applications. For valence excited states of organic compounds, it was found that the computed excitation energies from TSO-DFT and time-dependent density functional theory (TD-DFT) are of similar quality with average errors of 0.5 and 0.4 eV, respectively. For core excitation, doubly excited states and charge-transfer states, the performance of TSO-DFT is clearly superior to that from conventional TD-DFT calculations. It is shown that variationally optimized charge-localized diabatic states can be defined using TSO-DFT in energy decomposition analysis to gain both qualitative and quantitative insights on intermolecular interactions. Alternatively, the variational diabatic states may be used in molecular dynamics simulation of charge transfer processes. The TSO method can also be used to define basis states in multistate density functional theory for excited states through nonorthogonal state interaction calculations. The software implementing TSO-DFT can be accessed from the authors.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Zhen Tang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Hong Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Ruoqi Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,Institute of Theoretical Chemistry, Jilin University, Changchun, 130023 Jilin, P. R. China
| | - Yangyi Lu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Sirimatayanant S, Andruniów T. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations. J Chem Phys 2023; 158:094106. [PMID: 36889953 DOI: 10.1063/5.0135594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work presents the investigations of the impact of an increasing electron correlation in the hierarchy of coupled-cluster methods, i.e., CC2, CCSD, and CC3, on two-photon absorption (2PA) strengths for the lowest excited state of the minimal rhodopsin's chromophore model-cis-penta-2,4-dieniminium cation (PSB3). For a larger chromophore's model [4-cis-hepta-2,4,6-trieniminium cation (PSB4)], CC2 and CCSD calculations of 2PA strengths were performed. Additionally, 2PA strengths predicted by some popular density functional theory (DFT) functionals differing in HF exchange contribution were assessed against the reference CC3/CCSD data. For PSB3, the accuracy of 2PA strengths increases in the following order: CC2 < CCSD < CC3, with the CC2 deviation from both higher-level methods exceeding 10% at 6-31+G* basis sets and 2% at aug-cc-pVDZ basis set. However, for PSB4, this trend is reversed and CC2-based 2PA strength is larger than the corresponding CCSD value. Among the DFT functionals investigated, CAM-B3LYP and BHandHLYP provide 2PA strengths in best compliance with reference data, however, with the error approaching an order of magnitude.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
17
|
Wang M, Fang WH, Li C. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases. J Chem Theory Comput 2023; 19:122-136. [PMID: 36534617 DOI: 10.1021/acs.jctc.2c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a comprehensive excited-state benchmark for the state-averaged (SA) driven similarity renormalization group (DSRG) [Li, C.; Evangelista, F. A. J. Chem. Phys. 2018, 148, 124106]. Following the QUEST database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; Loos, P.-F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1517], 280 vertical transition energies of 35 medium-sized molecules are computed using the SA-DSRG derived second- and third-order perturbation theories (PT2/PT3) along with a nonperturbative approach [sq-LDSRG(2)]. Comparing to the theoretical best estimates, the optimal flow parameter is found to be 0.35 and 2.0 Eh-2 for SA-DSRG-PT2 and SA-DSRG-PT3, respectively. For SA-sq-LDSRG(2), a flow parameter of 1.5 Eh-2 provides converged equations without compromising the accuracy. We then assess the accuracy of the SA-DSRG hierarchy using these parameters. The SA-DSRG-PT2 scheme outperforms the level-shifted CASPT2 by 0.10 eV in mean absolute error (MAE), yet this accuracy is slightly inferior than that of CASPT2 with the ionization-potential-electron-affinity shift. Both SA-DSRG-PT3 and SA-sq-LDSRG(2) yield a MAE of 0.10 eV, which is comparable to that of CASPT3 (0.09 eV). Finally, we compute vertical excitation energies of several low-lying singlet states of nucleobases. The SA-sq-LDSRG(2) approach provides highly accurate results for π → π* excitations, while n → π* transitions are better described by SA-DSRG-PT3.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Damour Y, Quintero-Monsebaiz R, Caffarel M, Jacquemin D, Kossoski F, Scemama A, Loos PF. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality. J Chem Theory Comput 2023; 19:221-234. [PMID: 36548519 DOI: 10.1021/acs.jctc.2c01111] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report ground- and excited-state dipole moments and oscillator strengths (computed in different "gauges" or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CC with singles and doubles (CCSD) to CC with singles, doubles, and triples (CCSDT) or from CCSDT to CC with singles, doubles, triples, and quadruples (CCSDTQ)) reduces the average error with respect to the near-FCI reference values by approximately 1 order of magnitude.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.,Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
19
|
Shepard S, Panadés-Barrueta RL, Moroni S, Scemama A, Filippi C. Double Excitation Energies from Quantum Monte Carlo Using State-Specific Energy Optimization. J Chem Theory Comput 2022; 18:6722-6731. [DOI: 10.1021/acs.jctc.2c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stuart Shepard
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | | | - Saverio Moroni
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Marsili E, Prlj A, Curchod BFE. A Theoretical Perspective on the Actinic Photochemistry of 2-Hydroperoxypropanal. J Phys Chem A 2022; 126:5420-5433. [PMID: 35900368 PMCID: PMC9393889 DOI: 10.1021/acs.jpca.2c03783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The photochemical reactions triggered by the sunlight
absorption
of transient volatile organic compounds in the troposphere are notoriously
difficult to characterize experimentally due to the unstable and short-lived
nature of these organic molecules. Some members of this family of
compounds are likely to exhibit a rich photochemistry given the diversity
of functional groups they can bear. Even more interesting is the photochemical
fate of volatile organic compounds bearing more than one functional
group that can absorb light—this is the case, for example,
of α-hydroperoxycarbonyls, which are formed during the oxidation
of isoprene. Experimental observables characterizing the photochemistry
of these molecules like photoabsorption cross-sections or photolysis
quantum yields are currently missing, and we propose here to leverage
a recently developed computational protocol to predict in silico the
photochemical fate of 2-hydroperoxypropanal (2-HPP) in the actinic
region. We combine different levels of electronic structure methods—SCS-ADC(2)
and XMS-CASPT2—with the nuclear ensemble approach and trajectory
surface hopping to understand the mechanistic details of the possible
nonradiative processes of 2-HPP. In particular, we predict the photoabsorption
cross-section and the wavelength-dependent quantum yields for the
observed photolytic pathways and combine them to determine in silico
photolysis rate constants. The limitations of our protocol and possible
future improvements are discussed.
Collapse
Affiliation(s)
- Emanuele Marsili
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Antonio Prlj
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|