1
|
Landinez Borda EJ, Berard KO, Lopez A, Rubenstein B. Gaussian processes for finite size extrapolation of many-body simulations. Faraday Discuss 2024; 254:500-528. [PMID: 39282946 DOI: 10.1039/d4fd00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Key to being able to accurately model the properties of realistic materials is being able to predict their properties in the thermodynamic limit. Nevertheless, because most many-body electronic structure methods scale as a high-order polynomial, or even exponentially, with system size, directly simulating large systems in their thermodynamic limit rapidly becomes computationally intractable. As a result, researchers typically estimate the properties of large systems that approach the thermodynamic limit by extrapolating the properties of smaller, computationally-accessible systems based on relatively simple scaling expressions. In this work, we employ Gaussian processes to more accurately and efficiently extrapolate many-body simulations to their thermodynamic limit. We train our Gaussian processes on Smooth Overlap of Atomic Positions (SOAP) descriptors to extrapolate the energies of one-dimensional hydrogen chains obtained using two high-accuracy many-body methods: coupled cluster theory and Auxiliary Field Quantum Monte Carlo (AFQMC). In so doing, we show that Gaussian processes trained on relatively short 10-30-atom chains can predict the energies of both homogeneous and inhomogeneous hydrogen chains in their thermodynamic limit with sub-milliHartree accuracy. Unlike standard scaling expressions, our GPR-based approach is highly generalizable given representative training data and is not dependent on systems' geometries or dimensionality. This work highlights the potential for machine learning to correct for the finite size effects that routinely complicate the interpretation of finite size many-body simulations.
Collapse
Affiliation(s)
| | - Kenneth O Berard
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Annette Lopez
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Brenda Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
2
|
Iyer GR, Whelpley N, Tiihonen J, Kent PRC, Krogel JT, Rubenstein BM. Force-Free Identification of Minimum-Energy Pathways and Transition States for Stochastic Electronic Structure Theories. J Chem Theory Comput 2024; 20:7416-7429. [PMID: 39172163 DOI: 10.1021/acs.jctc.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The accurate mapping of potential energy surfaces (PESs) is crucial to our understanding of the numerous physical and chemical processes mediated by atomic rearrangements, such as conformational changes and chemical reactions, and the thermodynamic and kinetic feasibility of these processes. Stochastic electronic structure theories, e.g., Quantum Monte Carlo (QMC) methods, enable highly accurate total energy calculations that in principle can be used to construct the PES. However, their stochastic nature poses a challenge to the computation and use of forces and Hessians, which are typically required in algorithms for minimum-energy pathway (MEP) and transition state (TS) identification, such as the nudged elastic band (NEB) algorithm and its climbing image formulation. Here, we present strategies that utilize the surrogate Hessian line-search method, previously developed for QMC structural optimization, to efficiently identify MEP and TS structures without requiring force calculations at the level of the stochastic electronic structure theory. By modifying the surrogate Hessian algorithm to operate in path-orthogonal subspaces and at saddle points, we show that it is possible to identify MEPs and TSs by using a force-free QMC approach. We demonstrate these strategies via two examples, the inversion of the ammonia (NH3) molecule and the nucleophilic substitution (SN2) reaction F- + CH3F → FCH3 + F-. We validate our results using Density Functional Theory (DFT)- and Coupled Cluster (CCSD, CCSD(T))-based NEB calculations. We then introduce a hybrid DFT-QMC approach to compute thermodynamic and kinetic quantities, free energy differences, rate constants, and equilibrium constants that incorporates stochastically optimized structures and their energies, and show that this scheme improves upon DFT accuracy. Our methods generalize straightforwardly to other systems and other high-accuracy theories that similarly face challenges computing energy gradients, paving the way for highly accurate PES mapping, transition state determination, and thermodynamic and kinetic calculations at significantly reduced computational expense.
Collapse
Affiliation(s)
- Gopal R Iyer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Noah Whelpley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Juha Tiihonen
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Paul R C Kent
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jaron T Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Brenda M Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Xiao H, Tian Y, Gao H, Cui X, Dong S, Xue Q, Yao D. Analysis of the fatigue status of medical security personnel during the closed-loop period using multiple machine learning methods: a case study of the Beijing 2022 Olympic Winter Games. Sci Rep 2024; 14:8987. [PMID: 38637575 PMCID: PMC11026406 DOI: 10.1038/s41598-024-59397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Using machine learning methods to analyze the fatigue status of medical security personnel and the factors influencing fatigue (such as BMI, gender, and wearing protective clothing working hours), with the goal of identifying the key factors contributing to fatigue. By validating the predicted outcomes, actionable and practical recommendations can be offered to enhance fatigue status, such as reducing wearing protective clothing working hours. A questionnaire was designed to assess the fatigue status of medical security personnel during the closed-loop period, aiming to capture information on fatigue experienced during work and disease recovery. The collected data was then preprocessed and used to determine the structural parameters for each machine learning algorithm. To evaluate the prediction performance of different models, the mean relative error (MRE) and goodness of fit (R2) between the true and predicted values were calculated. Furthermore, the importance rankings of various parameters in relation to fatigue status were determined using the RF feature importance analysis method. The fatigue status of medical security personnel during the closed-loop period was analyzed using multiple machine learning methods. The prediction performance of these methods was ranked from highest to lowest as follows: Gradient Boosting Regression (GBM) > Random Forest (RF) > Adaptive Boosting (AdaBoost) > K-Nearest Neighbors (KNN) > Support Vector Regression (SVR). Among these algorithms, four out of the five achieved good prediction results, with the GBM method performing the best. The five most critical parameters influencing fatigue status were identified as working hours in protective clothing, a customized symptom and disease score (CSDS), physical exercise, body mass index (BMI), and age, all of which had importance scores exceeding 0.06. Notably, working hours in protective clothing obtained the highest importance score of 0.54, making it the most critical factor impacting fatigue status. Fatigue is a prevalent and pressing issue among medical security personnel operating in closed-loop environments. In our investigation, we observed that the GBM method exhibited superior predictive performance in determining the fatigue status of medical security personnel during the closed-loop period, surpassing other machine learning techniques. Notably, our analysis identified several critical factors influencing the fatigue status of medical security personnel, including the duration of working hours in protective clothing, CSDS, and engagement in physical exercise. These findings shed light on the multifaceted nature of fatigue among healthcare workers and emphasize the importance of considering various contributing factors. To effectively alleviate fatigue, prudent management of working hours for security personnel, along with minimizing the duration of wearing protective clothing, proves to be promising strategies. Furthermore, promoting regular physical exercise among medical security personnel can significantly impact fatigue reduction. Additionally, the exploration of medication interventions and the adoption of innovative protective clothing options present potential avenues for mitigating fatigue. The insights derived from this study offer valuable guidance to management personnel involved in organizing large-scale events, enabling them to make informed decisions and implement targeted interventions to address fatigue among medical security personnel. In our upcoming research, we will further expand the fatigue dataset while considering higher precisionprediction algorithms, such as XGBoost model, ensemble model, etc., and explore their potential contributions to our research.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yingping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hengbo Gao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaolei Cui
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shimin Dong
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qianlong Xue
- Department of Emergency, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Dongqi Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Lu B, Xia Y, Ren Y, Xie M, Zhou L, Vinai G, Morton SA, Wee ATS, van der Wiel WG, Zhang W, Wong PKJ. When Machine Learning Meets 2D Materials: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305277. [PMID: 38279508 PMCID: PMC10987159 DOI: 10.1002/advs.202305277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Indexed: 01/28/2024]
Abstract
The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper - yet more efficient - alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area.
Collapse
Affiliation(s)
- Bin Lu
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Yuze Xia
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Yuqian Ren
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Miaomiao Xie
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Liguo Zhou
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Giovanni Vinai
- Instituto Officina dei Materiali (IOM)‐CNRLaboratorio TASCTriesteI‐34149Italy
| | - Simon A. Morton
- Advanced Light Source (ALS)Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Andrew T. S. Wee
- Department of Physics and Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC)National University of SingaporeSingapore117542Singapore
| | - Wilfred G. van der Wiel
- NanoElectronics Group, MESA+ Institute for Nanotechnology and BRAINS Center for Brain‐Inspired Nano SystemsUniversity of TwenteEnschede7500AEThe Netherlands
- Institute of PhysicsUniversity of Münster48149MünsterGermany
| | - Wen Zhang
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
- NanoElectronics Group, MESA+ Institute for Nanotechnology and BRAINS Center for Brain‐Inspired Nano SystemsUniversity of TwenteEnschede7500AEThe Netherlands
| | - Ping Kwan Johnny Wong
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
- NPU Chongqing Technology Innovation CenterChongqing400000P. R. China
| |
Collapse
|
5
|
Yang T, Yang H, Liu Y, Liu X, Ding YJ, Li R, Mao AQ, Huang Y, Li XL, Zhang Y, Yu FX. Postoperative delirium prediction after cardiac surgery using machine learning models. Comput Biol Med 2024; 169:107818. [PMID: 38134752 DOI: 10.1016/j.compbiomed.2023.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Postoperative delirium (POD) is a common postoperative complication in elderly patients, especially those undergoing cardiac surgery, which seriously affects the short- and long-term prognosis of patients. Early identification of risk factors for the development of POD can help improve the perioperative management of surgical patients. In the present study, five machine learning models were developed to predict patients at high risk of delirium after cardiac surgery and their performance was compared. METHODS A total of 367 patients who underwent cardiac surgery were retrospectively included in this study. Using single-factor analysis, 21 risk factors for POD were selected for inclusion in machine learning. The dataset was divided using 10-fold cross-validation for model training and testing. Five machine learning models (random forest (RF), support vector machine (SVM), radial based kernel neural network (RBFNN), K-nearest neighbour (KNN), and Kernel ridge regression (KRR)) were compared using area under the receiver operating characteristic curve (AUC-ROC), accuracy (ACC), sensitivity (SN), specificity (SPE), and Matthews coefficient (MCC). RESULTS Among 367 patients, 105 patients developed POD, the incidence of delirium was 28.6 %. Among the five ML models, RF had the best performance in ACC (87.99 %), SN (69.27 %), SPE (95.38 %), MCC (70.00 %) and AUC (0.9202), which was far superior to the other four models. CONCLUSION Delirium is common in patients after cardiac surgery. This analysis confirms the importance of the computational ML models in predicting the occurrence of delirium after cardiac surgery, especially the outstanding performance of the RF model, which has practical clinical applications for early identification of patients at risk of developing POD.
Collapse
Affiliation(s)
- Tan Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hai Yang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi-Jie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, 324000 Quzhou, Zhejiang, China
| | - Run Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - An-Qiong Mao
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Huang
- Department of Anesthesiology, Zigong First People's Hospital, Zi Gong, 644099, Sichuan, China
| | - Xiao-Liang Li
- Department of Cardiothoracic Surgery, First Peoples Hospital of Neijiang, Nei Jiang, 641000, Sichuan, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Feng-Xu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Chen MS, Lee J, Ye HZ, Berkelbach TC, Reichman DR, Markland TE. Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy. J Chem Theory Comput 2023; 19:4510-4519. [PMID: 36730728 DOI: 10.1021/acs.jctc.2c01203] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first-principles remains one of the forefront challenges of chemical theory. Here we exploit recent advances in periodic electronic structure and provide a data-efficient approach to obtain machine-learned condensed-phase potential energy surfaces using AFQMC, CCSD, and CCSD(T) from a very small number (≤200) of energies by leveraging a transfer learning scheme starting from lower-tier electronic structure methods. We demonstrate the effectiveness of this approach for liquid water by performing both classical and path integral molecular dynamics simulations on these machine-learned potential energy surfaces. By doing this, we uncover the interplay of dynamical electron correlation and nuclear quantum effects across the entire liquid range of water while providing a general strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered condensed-phase systems.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York10027, United States
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York10010, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
7
|
Wheeler WA, Pathak S, Kleiner KG, Yuan S, Rodrigues JNB, Lorsung C, Krongchon K, Chang Y, Zhou Y, Busemeyer B, Williams KT, Muñoz A, Chow CY, Wagner LK. PyQMC: An all-Python real-space quantum Monte Carlo module in PySCF. J Chem Phys 2023; 158:114801. [PMID: 36948839 DOI: 10.1063/5.0139024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.
Collapse
Affiliation(s)
- William A Wheeler
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shivesh Pathak
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | - Kevin G Kleiner
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shunyue Yuan
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA
| | - João N B Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC-UFABC, Santo André, São Paulo 09210-580, Brazil
| | - Cooper Lorsung
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Kittithat Krongchon
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yueqing Chang
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yiqing Zhou
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | - Alexander Muñoz
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chun Yu Chow
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lucas K Wagner
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
9
|
Abstract
Diffusion Monte Carlo (DMC) is one of the most accurate techniques available for calculating the electronic properties of molecules and materials, yet it often remains a challenge to economically compute forces using this technique. As a result, ab initio molecular dynamics simulations and geometry optimizations that employ Diffusion Monte Carlo forces are often out of reach. One potential approach for accelerating the computation of "DMC forces" is to machine learn these forces from DMC energy calculations. In this work, we employ Behler-Parrinello Neural Networks to learn DMC forces from DMC energy calculations for geometry optimization and molecular dynamics simulations of small molecules. We illustrate the unique challenges that stem from learning forces without explicit force data and from noisy energy data by making rigorous comparisons of potential energy surface, dynamics, and optimization predictions among ab initio density functional theory (DFT) simulations and machine-learning models trained on DFT energies with forces, DFT energies without forces, and DMC energies without forces. We show for three small molecules─C2, H2O, and CH3Cl─that machine-learned DMC dynamics can reproduce average bond lengths and angles within a few percent of known experimental results at one hundredth of the typical cost. Our work describes a much-needed means of performing dynamics simulations on high-accuracy, DMC PESs and for generating DMC-quality molecular geometries given current algorithmic constraints.
Collapse
Affiliation(s)
- Cancan Huang
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Brenda M Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|