• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5072617)   Today's Articles (14)
For: Chen MS, Lee J, Ye HZ, Berkelbach TC, Reichman DR, Markland TE. Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy. J Chem Theory Comput 2023;19:4510-4519. [PMID: 36730728 DOI: 10.1021/acs.jctc.2c01203] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Number Cited by Other Article(s)
1
Kelly J, Hu F, Damiani A, Chen MS, Snider A, Son M, Lee A, Gupta P, Montoya-Castillo A, Zuehlsdorff TJ, Schlau-Cohen GS, Isborn CM, Markland TE. Two-Dimensional Electronic Spectroscopy in the Condensed Phase Using Equivariant Transformer Accelerated Molecular Dynamics Simulations. J Phys Chem Lett 2025:5561-5569. [PMID: 40434198 DOI: 10.1021/acs.jpclett.5c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
2
Tokita AM, Devergne T, Saitta AM, Behler J. Free energy profiles for chemical reactions in solution from high-dimensional neural network potentials: The case of the Strecker synthesis. J Chem Phys 2025;162:174120. [PMID: 40326597 DOI: 10.1063/5.0268948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]  Open
3
Ng WP, Zhang Z, Yang J. Accurate Neural Network Fine-Tuning Approach for Transferable Ab Initio Energy Prediction across Varying Molecular and Crystalline Scales. J Chem Theory Comput 2025;21:1602-1614. [PMID: 39902570 DOI: 10.1021/acs.jctc.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
4
Moon SW, Willow SY, Park TH, Min SK, Myung CW. Machine Learning Nonadiabatic Dynamics: Eliminating Phase Freedom of Nonadiabatic Couplings with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach. J Chem Theory Comput 2025;21:1521-1529. [PMID: 39904753 DOI: 10.1021/acs.jctc.4c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
5
Paschek D, Busch J, Chiramel Tony AM, Ludwig R, Strate A, Stolte N, Forbert H, Marx D. When theory meets experiment: What does it take to accurately predict 1H NMR dipolar relaxation rates in neat liquid water from theory? J Chem Phys 2025;162:054501. [PMID: 39898566 DOI: 10.1063/5.0249826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]  Open
6
Stolte N, Daru J, Forbert H, Marx D, Behler J. Random Sampling Versus Active Learning Algorithms for Machine Learning Potentials of Quantum Liquid Water. J Chem Theory Comput 2025;21:886-899. [PMID: 39808506 DOI: 10.1021/acs.jctc.4c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
7
Kulichenko M, Nebgen B, Lubbers N, Smith JS, Barros K, Allen AEA, Habib A, Shinkle E, Fedik N, Li YW, Messerly RA, Tretiak S. Data Generation for Machine Learning Interatomic Potentials and Beyond. Chem Rev 2024;124:13681-13714. [PMID: 39572011 DOI: 10.1021/acs.chemrev.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
8
Stolte N, Daru J, Forbert H, Behler J, Marx D. Nuclear Quantum Effects in Liquid Water Are Marginal for Its Average Structure but Significant for Dynamics. J Phys Chem Lett 2024;15:12144-12150. [PMID: 39607891 DOI: 10.1021/acs.jpclett.4c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
9
Tian W, Wang C, Zhou K. The Dynamic Diversity and Invariance of Ab Initio Water. J Chem Theory Comput 2024;20:10667-10675. [PMID: 39558782 DOI: 10.1021/acs.jctc.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
10
Thiemann FL, O'Neill N, Kapil V, Michaelides A, Schran C. Introduction to machine learning potentials for atomistic simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024;37:073002. [PMID: 39577092 DOI: 10.1088/1361-648x/ad9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
11
Thomsen B, Nagai Y, Kobayashi K, Hamada I, Shiga M. Self-learning path integral hybrid Monte Carlo with mixed ab initio and machine learning potentials for modeling nuclear quantum effects in water. J Chem Phys 2024;161:204109. [PMID: 39601285 DOI: 10.1063/5.0230464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]  Open
12
Jiang T, Baumgarten MKA, Loos PF, Mahajan A, Scemama A, Ung SF, Zhang J, Malone FD, Lee J. Improved modularity and new features in ipie: Toward even larger AFQMC calculations on CPUs and GPUs at zero and finite temperatures. J Chem Phys 2024;161:162502. [PMID: 39450727 DOI: 10.1063/5.0225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]  Open
13
Ye HZ, Berkelbach TC. Periodic Local Coupled-Cluster Theory for Insulators and Metals. J Chem Theory Comput 2024;20:8948-8959. [PMID: 39376105 DOI: 10.1021/acs.jctc.4c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
14
Isamura BK, Popelier PLA. Transfer learning of hyperparameters for fast construction of anisotropic GPR models: design and application to the machine-learned force field FFLUX. Phys Chem Chem Phys 2024;26:23677-23691. [PMID: 39224929 PMCID: PMC11369757 DOI: 10.1039/d4cp01862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
15
Wang J, Hei H, Zheng Y, Zhang H, Ye H. Five-Site Water Models for Ice and Liquid Water Generated by a Series-Parallel Machine Learning Strategy. J Chem Theory Comput 2024;20:7533-7545. [PMID: 39133036 DOI: 10.1021/acs.jctc.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
16
Iyer GR, Whelpley N, Tiihonen J, Kent PRC, Krogel JT, Rubenstein BM. Force-Free Identification of Minimum-Energy Pathways and Transition States for Stochastic Electronic Structure Theories. J Chem Theory Comput 2024;20:7416-7429. [PMID: 39172163 DOI: 10.1021/acs.jctc.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
17
Willow SY, Kim DG, Sundheep R, Hajibabaei A, Kim KS, Myung CW. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations. Phys Chem Chem Phys 2024;26:22073-22082. [PMID: 39113586 DOI: 10.1039/d4cp01801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
18
Shi BX, Wales DJ, Michaelides A, Myung CW. Going for Gold(-Standard): Attaining Coupled Cluster Accuracy in Oxide-Supported Nanoclusters. J Chem Theory Comput 2024;20:5306-5316. [PMID: 38856017 DOI: 10.1021/acs.jctc.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
19
O’Neill N, Shi BX, Fong K, Michaelides A, Schran C. To Pair or not to Pair? Machine-Learned Explicitly-Correlated Electronic Structure for NaCl in Water. J Phys Chem Lett 2024;15:6081-6091. [PMID: 38820256 PMCID: PMC11181334 DOI: 10.1021/acs.jpclett.4c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
20
Althorpe SC. Path Integral Simulations of Condensed-Phase Vibrational Spectroscopy. Annu Rev Phys Chem 2024;75:397-420. [PMID: 38941531 DOI: 10.1146/annurev-physchem-090722-124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
21
Pollak E. A personal perspective of the present status and future challenges facing thermal reaction rate theory. J Chem Phys 2024;160:150902. [PMID: 38639316 DOI: 10.1063/5.0199557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024]  Open
22
Tokita AM, Behler J. How to train a neural network potential. J Chem Phys 2023;159:121501. [PMID: 38127396 DOI: 10.1063/5.0160326] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 12/23/2023]  Open
23
Yu Q, Qu C, Houston PL, Nandi A, Pandey P, Conte R, Bowman JM. A Status Report on "Gold Standard" Machine-Learned Potentials for Water. J Phys Chem Lett 2023;14:8077-8087. [PMID: 37656898 PMCID: PMC10510435 DOI: 10.1021/acs.jpclett.3c01791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
24
Atsango AO, Morawietz T, Marsalek O, Markland TE. Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations. J Chem Phys 2023;159:074101. [PMID: 37581418 DOI: 10.1063/5.0162066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]  Open
25
Sukurma Z, Schlipf M, Humer M, Taheridehkordi A, Kresse G. Benchmark Phaseless Auxiliary-Field Quantum Monte Carlo Method for Small Molecules. J Chem Theory Comput 2023;19:4921-4934. [PMID: 37470356 PMCID: PMC10413869 DOI: 10.1021/acs.jctc.3c00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/21/2023]
26
Ruth M, Gerbig D, Schreiner PR. Machine Learning for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies. J Chem Theory Comput 2023. [PMID: 37418619 DOI: 10.1021/acs.jctc.3c00274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
27
Guidarelli Mattioli F, Sciortino F, Russo J. Are Neural Network Potentials Trained on Liquid States Transferable to Crystal Nucleation? A Test on Ice Nucleation in the mW Water Model. J Phys Chem B 2023;127:3894-3901. [PMID: 37075256 PMCID: PMC10165654 DOI: 10.1021/acs.jpcb.3c00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Indexed: 04/21/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA