1
|
Wang Y, Yu J, Zhou Z, Zhao W, Wang Y, Zhao J, Ma C, Lin ZY, Wu Y, Wang X, Ma H, Zhu WH. Organic Ionic Host-Guest Phosphor with Dual-Confined Nonradiation for Constructing Ultrahigh-Temperature X-ray Scintillator. J Am Chem Soc 2025; 147:11098-11107. [PMID: 40110980 DOI: 10.1021/jacs.4c16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Scintillators with X-ray-excitable luminescence have attracted great attention in the fields of medical radiography, nondestructive inspection, and high-energy physics. However, thermal quenching significantly reduces radioluminescence efficiency, particularly for those phosphorescent scintillators with promising radiation-induced triplet exciton utilization, ultimately limiting their applications in high-temperature scenarios. Herein, we develop ultrahigh-temperature scintillators based on organic ionic host-guest phosphorescence systems with unprecedented thermal-stable emissions up to 673 K. The guest phosphor features spin-vibronic coupling-assisted intersystem crossing, effectively transforming phosphorescence to thermally activated delayed fluorescence for overcoming thermal inactivation of triplet excitons. Meanwhile, the rigid ionic host and guest with robust electrostatic interactions minimize both the intrinsic and extrinsic nonradiations of excitons, the so-called dual-confined nonradiation. These two mechanisms work synergistically, contributing to the highly efficient triplet exciton-based luminescence with a room-temperature phosphorescence efficiency of 38.7% and ultrahigh-temperature-resistant dual emissions. Such an innovative ionic host-guest scintillator achieves an impressively low X-ray detection limit of 71.5 nGy s-1 and remarkably bright photoluminescence (efficiency of 80.4% at 483 K), enabling ultrahigh-temperature X-ray imaging.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiahong Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zixing Zhou
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiamen 361102, P. R. China
| | - Weijun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yilong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiaqiang Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chenggong Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhen-Yi Lin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiamen 361102, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Manna AK. Thiocarbonyl-Bridged N-Heterotriangulenes for Energy Efficient Triplet Photosensitization: A Theoretical Perspective. Chemphyschem 2024; 25:e202400371. [PMID: 38700483 DOI: 10.1002/cphc.202400371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Structurally-rigid metal-free organic molecules are of high demand for various triplet harvesting applications. However, inefficient intersystem crossing (ISC) due to large singlet-triplet gap (Δ E S - T ${\Delta {E}_{S-T}}$ ) and small spin-orbit coupling (SOC) between lowest excited singlet and triplet often limits their efficiency. Excited electronic states, fluorescence and ISC rates in several thiocarbonyl-bridged N-heterotriangulene ( m ${m}$ S-HTG) with systematically increased thione content (m = ${m=}$ 0-3) are investigated implementing polarization consistent time-dependent optimally-tuned range-separated hybrid. All m ${m}$ S-HTGs are dynamically stable and also thermodynamically feasible to synthesize. Relative energies of several low-lying singlets (S n ${{S}_{n}}$ ) and triplets (T n ${{T}_{n}}$ ), and their excitation nature (i. e.,n π * ${n{\pi }^{^{\ast}}}$ orπ π * ${\pi {\pi }^{^{\ast}}}$ ) and SOC are determined for these m ${m}$ S-HTGs in dichloromethane. Low-energy optical peak displays gradual red-shift with increasing thione content due to relatively smaller electronic gap resulted from greater degree of orbital delocalization. Significantly large SOC due to different orbital-symmetry and heavy-atom effect produces remarkably high ISC rates (k I S C ${{k}_{ISC}}$ ~1012 s-1) for enthalpically favouredS 1 n π * → T 2 ${{S}_{1}\left(n{\pi }^{^{\ast}}\right)\to {T}_{2}}$ (π π * ${\pi {\pi }^{^{\ast}}}$ ) channel in these m ${m}$ S-HTGs, which outcompete radiative fluorescence rates (~108 s-1) even directly from higher lying optically brightπ π * ${\pi {\pi }^{^{\ast}}}$ singlets. Importantly, high energy triplet excitons of ~1.7 eV resulting from such significantly large ISC rates from non-fluorescentS 1 n π * ${{S}_{1}\left(n{\pi }^{^{\ast}}\right)}$ make these thiocarbonylated HTGs ideal candidates for energy efficient triplet harvest including triplet-photosensitization.
Collapse
Affiliation(s)
- Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, 517619, Tirupati, Andhra Pradesh, India
| |
Collapse
|
3
|
Eng J, Rankine CD, Penfold TJ. The photochemistry of Rydberg-excited cyclobutanone: Photoinduced processes and ground state dynamics. J Chem Phys 2024; 160:154301. [PMID: 38619456 DOI: 10.1063/5.0203597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
Owing to ring strain, cyclic ketones exhibit complex excited state dynamics with multiple competing photochemical channels active on the ultrafast timescale. While the excited state dynamics of cyclobutanone after π* ← n excitation into the lowest-energy excited singlet (S1) state has been extensively studied, the dynamics following 3s ← n excitation into the higher-lying singlet Rydberg (S2) state are less well understood. Herein, we employ fully quantum multiconfigurational time-dependent Hartree (MCTDH) simulations using a model Hamiltonian as well as "on-the-fly" trajectory-based surface-hopping dynamics (TSHD) simulations to study the relaxation dynamics of cyclobutanone following 3s ← n excitation and to predict the ultrafast electron diffraction scattering signature of these relaxation dynamics. Our MCTDH and TSHD simulations indicate that relaxation from the initially-populated singlet Rydberg (S2) state occurs on the timescale of a few hundreds of femtoseconds to a picosecond, consistent with the symmetry-forbidden nature of the state-to-state transition involved. There is no obvious involvement of excited triplet states within the timeframe of our simulations (<2 ps). After non-radiative relaxation to the electronic ground state (S0), vibrationally hot cyclobutanone has sufficient internal energy to form multiple fragmented products including C2H4 + CH2CO (C2; 20%) and C3H6 + CO (C3; 2.5%). We discuss the limitations of our MCTDH and TSHD simulations, how these may influence the excited state dynamics we observe, and-ultimately-the predictive power of the simulated experimental observable.
Collapse
Affiliation(s)
- J Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - C D Rankine
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - T J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|