1
|
Nicholson V, Nguyen K, Gollub E, McCoy M, Yu F, Holehouse AS, Sukenik S, Boothby TC. LEA_4 motifs function alone and in conjunction with synergistic cosolutes to protect a labile enzyme during desiccation. Protein Sci 2025; 34:e70028. [PMID: 39840786 PMCID: PMC11751883 DOI: 10.1002/pro.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species. However, the role of these motifs in the function of LEA_4 proteins is unclear, with some studies finding that they recapitulate the function of full-length LEA_4 proteins in vivo, and other studies finding the opposite result. In this study, we characterize the ability of LEA_4 motifs to protect a desiccation-sensitive enzyme, citrate synthase (CS), from loss of function during desiccation. We show here that LEA_4 motifs not only prevent the loss of function of CS during desiccation but also that they can do so more robustly via synergistically interactions with cosolutes. Our analysis further suggests that cosolutes induce synergy with LEA_4 motifs in a manner that correlates with transfer free energy. This research advances our understanding of LEA_4 proteins by demonstrating that during desiccation their motifs can protect specific clients to varying degrees and that their protective capacity is modulated by their chemical environment. Our findings extend beyond the realm of desiccation tolerance, offering insights into the interplay between IDPs and cosolutes. By investigating the function of LEA_4 motifs, we highlight broader strategies for understanding protein stability and function.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Kenny Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Mary McCoy
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
2
|
Patidar A, Goel G. MARTINI Coarse-Grained Force Field for Thermoplastic Starch Nanocomposites. J Phys Chem B 2024; 128:11468-11480. [PMID: 39527046 DOI: 10.1021/acs.jpcb.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thermoplastic starch (TPS) is an excellent film-forming material, and the addition of fillers, such as tetramethylammonium-montmorillonite (TMA-MMT) clay, has significantly expanded its use in packaging applications. We first used an all-atom (AA) simulation to predict several macroscopic (Young's modulus, glass transition temperature, density) and microscopic (conformation along 1-4 and 1-6 glycosidic linkages, composite morphology) properties of TPS melt and TPS-TMA-MMT composite. The interplay of polymer-surface (weakly repulsive), plasticizer-surface (attractive), and polymer-plasticizer (weakly attractive) interactions leads to conformational and dynamics properties distinct from those in systems with either attractive or repulsive polymer-surface interactions. A subset of AA properties was used to parametrize the MARTINI-2 coarse-grained (CG) force field (FF) for the melt and composite systems. The missing bonded parameters of amylose and amylopectin and the bead types for 1-4 and 1-6 linked α-D glucose were determined using two-body excess entropy, density, and bond and angle distributions in the AA TPS melt. This new MARTINI-2 CG model was also compared with the MARTINI-3 model for the TPS melt. However, the requirement of a polarizable water model necessitates the use of MARTINI-2 FF for the composite system. This liquid-liquid partitioning-based FF shows freezing and compaction of polymer chains near the clay surface, further accentuated by lowering of dispersive interactions between pairs of high-covalent-coordination ring units of TPS polymers and the montmorillonite sheet. A rescaling of the effective dispersive component of TPS-MMT cross interactions was used to optimize the MARTINI-2 FF for the composite system with structural (chain size distribution), thermodynamic (chain conformational entropy and density), and dynamic (self-diffusion coefficient) properties obtained from long AA simulations forming the constraints for optimization. The obtained CG FF parameters provided excellent estimates for several other properties of the melt and composite systems not used in parameter estimation, thus establishing the robustness of the developed model.
Collapse
Affiliation(s)
- Ankit Patidar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Bhattacharjee S, Pandit S, Seth D. Co-Solutes Induced Changes in the Properties of Polymeric Solution and Water Dynamics. Chemphyschem 2024; 25:e202400236. [PMID: 38517663 DOI: 10.1002/cphc.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
In this paper we are addressing the co-solute-induced changes in the properties of an aqueous solution of a block copolymer. Due to the preferential interaction of different co-solute with different regions of the block copolymer, the changes were observed in both the physical properties and water dynamics. The modulation of both the physical properties and water dynamics was monitored using different spectroscopic techniques. Different co-solutes affect micellar properties of copolymer to a different extent signifying their interactions with different regions within the copolymer. The solvent relaxation dynamics were also modulated with the additions of different co-solutes. The change in free-energy (ΔGbf) and rate constant for bound to free water interconversion (kbf) in a copolymeric micelle was calculated which gets affected by the addition of co-solutes. The calculated kbf suggests that betaine, sarcosine, TMAO, and GnHCl favor the ordering of water molecules around the micelle and are excluded from the micellar surface whereas, urea favors the formation of free-water molecules rather than the structurally ordered bound water molecules around the micelle by accumulating at the micellar surface. Among the added methylamines trimethylamine N-oxide affected the water dynamics and its kinetics most profoundly. The protective property of GnHCl was revealed.
Collapse
Affiliation(s)
- Sanyukta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India
| | - Souvik Pandit
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India
| |
Collapse
|
4
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
5
|
Quinn SD, Dresser L, Graham S, Conteduca D, Shepherd J, Leake MC. Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET. Front Bioeng Biotechnol 2022; 10:958026. [PMID: 36394015 PMCID: PMC9650091 DOI: 10.3389/fbioe.2022.958026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Lipid vesicles are valuable mesoscale molecular confinement vessels for studying membrane mechanics and lipid-protein interactions, and they have found utility among bio-inspired technologies, including drug delivery vehicles. While vesicle morphology can be modified by changing the lipid composition and introducing fusion or pore-forming proteins and detergents, the influence of extramembrane crowding on vesicle morphology has remained under-explored owing to a lack of experimental tools capable of capturing morphological changes on the nanoscale. Here, we use biocompatible polymers to simulate molecular crowding in vitro, and through combinations of FRET spectroscopy, lifetime analysis, dynamic light scattering, and single-vesicle imaging, we characterize how crowding regulates vesicle morphology. We show that both freely diffusing and surface-tethered vesicles fluorescently tagged with the DiI and DiD FRET pair undergo compaction in response to modest concentrations of sorbitol, polyethylene glycol, and Ficoll. A striking observation is that sorbitol results in irreversible compaction, whereas the influence of high molecular weight PEG-based crowders was found to be reversible. Regulation of molecular crowding allows for precise control of the vesicle architecture in vitro, with vast implications for drug delivery and vesicle trafficking systems. Furthermore, our observations of vesicle compaction may also serve to act as a mechanosensitive readout of extramembrane crowding.
Collapse
Affiliation(s)
- Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lara Dresser
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Sarah Graham
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Donato Conteduca
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Jack Shepherd
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
6
|
Nasralla M, Laurent H, Baker DL, Ries ME, Dougan L. A study of the interaction between TMAO and urea in water using NMR spectroscopy. Phys Chem Chem Phys 2022; 24:21216-21222. [PMID: 36040138 DOI: 10.1039/d2cp02475f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethylamine N-oxide (TMAO) and urea are small organic biological molecules. While TMAO is known as a protective osmolyte that promotes the native form of biomolecules, urea is a denaturant. An understanding of the impact of TMAO and urea on water structure may aid in uncovering the molecular mechanisms that underlie this activity. Here we investigate binary solutions of TMAO-water, urea-water and ternary solutions of TMAO-urea-water using NMR spectroscopy at 300 K. An enhancement of the total hydrogen bonding in water was found upon the addition of TMAO and this effect was neutralised by a mole ratio of 1-part TMAO to 4-parts urea. Urea was found to have little effect on the strength of water's hydrogen bonding network and the dynamics of water molecules. Evidence was found for a weak interaction between TMAO and urea. Taken together, these results suggest that TMAO's function as a protective osmolyte, and its counteraction of urea, may be driven by the strength of its hydrogen bond interactions with water, and by a secondary reinforcement of water's own hydrogen bond network. They also suggest that the TMAO-urea complex forms through the donation of a hydrogen bond by urea.
Collapse
Affiliation(s)
- Mazin Nasralla
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - Harrison Laurent
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - Daniel L Baker
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Garfagnini T, Levi-Kalisman Y, Harries D, Friedler A. Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein. Biophys J 2021; 120:3455-3469. [PMID: 34087214 DOI: 10.1016/j.bpj.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein. Axin is a key player in the Wnt signaling pathway, and the L106R mutation in its RGS domain results in a native molten globule that tends to form native-like aggregates. This results in uncontrolled activation of the Wnt signaling pathway, leading to cancer. We monitored the aggregation process of Axin RGS L106R in vitro in the presence of a wide ensemble of cosolutes including polyols, amino acids, betaine, and polyethylene glycol crowders. Except myo-inositol, all polyols decreased RGS L106R aggregation, with carbohydrates exerting the strongest inhibition. Conversely, betaine and polyethylene glycols enhanced aggregation. These results are consistent with the reported effects of osmolytes and crowders on the stability of molten globular proteins and with both amorphous and amyloid aggregation mechanisms. We suggest a model of Axin L106R aggregation in vivo, whereby molecularly small osmolytes keep the protein as a free soluble molecule but the increased crowding of the bound state by macromolecules induces its aggregation at the nanoscale. To our knowledge, this is the first systematic study on the effect of osmolytes and crowders on a process of native-like aggregation involved in pathology, as it sheds light on the contribution of cosolutes to the onset of cancer as a protein misfolding disease and on the relevance of aggregation in the molecular etiology of cancer.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology and The Alexander Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel; The Fritz Haber Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Korang-Yeboah M, Ketcham S, Shih M, Ako-Adounvo AM, Zhang J, Bandaranayake BM, Abbey-Berko Y, Faustino P, Ashraf M. Effect of formulation and peptide folding on the fibrillar aggregation, gelation, and oxidation of a therapeutic peptide. Int J Pharm 2021; 604:120677. [PMID: 33961953 DOI: 10.1016/j.ijpharm.2021.120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
The physical and chemical stability of therapeutic peptides presents challenges in developing robust formulations. The stability of the formulation affects product safety, efficacy and quality. Therefore, an understanding of the effects of formulation variables on the peptide's conformational structure and on its possible physical and chemical degradation is vital. To this end, computational and experimental analysis were employed to investigate the impact of formulation, peptide folding and product handling on oxidation, fibrillar aggregation and gelation of teriparatide. Teriparatide was used as a model drug due to the correlation of its conformation in solution with its pharmacological activity. Fibrillar aggregation and gelation were monitored using four orthogonal techniques. An innovative, automated platform coupled with ion mobility mass spectrometry was used for profiling chemical degradants. Increases in teriparatide concentration, pH, and ionic strength were found to increase the rate of fibrillar aggregation and gelation. Conversely, an increase in peptide folding and stabilization of the folded structures was found to decrease the rate of fibrillar aggregation and gelation. Moreover, the rate of oxidation was found to be inversely related to its solution concentration and extent of peptide folding. The present study provides an insight into formulation strategies designed to reduce the potential risk of physical and chemical degradation of peptides with a defined conformation.
Collapse
Affiliation(s)
- Maxwell Korang-Yeboah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Stephanie Ketcham
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Mack Shih
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Ann-Marie Ako-Adounvo
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Jinhui Zhang
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Bandaranayake M Bandaranayake
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Yvonne Abbey-Berko
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Patrick Faustino
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Muhammad Ashraf
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| |
Collapse
|
9
|
Temperature dependent aggregation mechanism and pathway of lysozyme: By all atom and coarse grained molecular dynamics simulation. J Mol Graph Model 2020; 103:107816. [PMID: 33291026 DOI: 10.1016/j.jmgm.2020.107816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Aggregation of protein causes various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. It was found that aggregation of protein depends on many factors like temperature, pH, salt type, salt concentration, ionic strength, protein concentration, co solutes. Here we have tried to capture the aggregation mechanism and pathway of hen egg white lysozyme using molecular dynamics simulations at two different temperatures; 300 K and 340 K. Along with the all atom simulations to get the atomistic details of aggregation mechanism, we have used coarse grained simulation with MARTINI force field to monitor the aggregation for longer duration. Our results suggest that due to the aggregation, changes in the conformation of lysozyme are more at 340 K than at 300 K. The change in the conformation of the lysozyme at 300 K is mainly due to aggregation where at 340 K change in conformation of lysozyme is due to both aggregation and temperature. Also, a more compact aggregated system is formed at 340 K.
Collapse
|
10
|
Sukenik S, Salam M, Wang Y, Gruebele M. In-Cell Titration of Small Solutes Controls Protein Stability and Aggregation. J Am Chem Soc 2018; 140:10497-10503. [DOI: 10.1021/jacs.8b04809] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shahar Sukenik
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Mohammed Salam
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations. PLoS One 2016; 11:e0166487. [PMID: 27870861 PMCID: PMC5117683 DOI: 10.1371/journal.pone.0166487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
We report here interesting synergistic effects of proline and sorbitol, two well-known chemical chaperones, in the inhibition of fibrillation of two proteins, insulin and lysozyme. A combination of many biophysical techniques has been used to understand the structural morphology and modes of interaction of the chaperones with the proteins during fibrillation. Both the chaperones establish stronger polar interactions in the elongation and saturation stages of fibrillation compared to that in the native stage. However, when presented as a mixture, we also see contribution of hydrophobic interactions. Thus, a co-operative adjustment of polar and hydrophobic interactions between the chaperones and the protein surface seems to drive the synergistic effects in the fibrillation process. In insulin, this synergy is quantitatively similar in all the stages of the fibrillation process. These observations would have significant implications for understanding protein folding concepts, in general, and for designing combination therapies against protein fibrillation, in particular.
Collapse
|
12
|
Muttathukattil AN, Reddy G. Osmolyte Effects on the Growth of Amyloid Fibrils. J Phys Chem B 2016; 120:10979-10989. [DOI: 10.1021/acs.jpcb.6b09215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aswathy N. Muttathukattil
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
13
|
Inayathullah M, Rajadas J. Conformational dynamics of a hydrophobic prion fragment (113-127) in different pH and osmolyte solutions. Neuropeptides 2016; 57:9-14. [PMID: 26919915 DOI: 10.1016/j.npep.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 01/17/2023]
Abstract
Prion diseases are characterized by a conformational change in prion protein from its native state into beta-sheet rich aggregates that are neurotoxic. The central domain that contain a highly conserved hydrophobic region of the protein play an important role in the toxicity. The conformation of the proteins is largely influenced by various solvent environments. Here we report results of study of hydrophobic prion fragment peptide PrP(113-127) under different pH and osmolytes solution conditions. The secondary structure and the folding of PrP(113-127) was determined using circular dichroism and fluorescence spectroscopic methods. The results indicate that PrP(113-127) adopts a random coil conformation in aqueous buffer at neutral pH and that converted into beta sheet on aging. Even though the initial random coil conformation was similar in different pH conditions, the acidic as well as basic pH conditions delays the conformational transition to beta sheet. FRET results indicate that the distance between N and C-terminal regions increased on aging due to unfolding by self-assembly of the peptide into an organized beta sheet structure. Presence of osmolytes, prevented or decelerated the aggregation process of PrP(113-127) peptide.
Collapse
Affiliation(s)
- Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India; Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Portnaya I, Avni S, Kesselman E, Boyarski Y, Sukenik S, Harries D, Dan N, Cogan U, Danino D. Competing processes of micellization and fibrillization in native and reduced casein proteins. Phys Chem Chem Phys 2016; 18:22516-25. [DOI: 10.1039/c6cp04582k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Competition between micellization and fibrillization in milk caseins, intrinsically disordered proteins (IDPs).
Collapse
Affiliation(s)
- Irina Portnaya
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Sharon Avni
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Ellina Kesselman
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Yoav Boyarski
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Shahar Sukenik
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Daniel Harries
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Nily Dan
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | - Uri Cogan
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Dganit Danino
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| |
Collapse
|