1
|
Sirimatayanant S, Andruniów T. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations. J Chem Phys 2023; 158:094106. [PMID: 36889953 DOI: 10.1063/5.0135594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work presents the investigations of the impact of an increasing electron correlation in the hierarchy of coupled-cluster methods, i.e., CC2, CCSD, and CC3, on two-photon absorption (2PA) strengths for the lowest excited state of the minimal rhodopsin's chromophore model-cis-penta-2,4-dieniminium cation (PSB3). For a larger chromophore's model [4-cis-hepta-2,4,6-trieniminium cation (PSB4)], CC2 and CCSD calculations of 2PA strengths were performed. Additionally, 2PA strengths predicted by some popular density functional theory (DFT) functionals differing in HF exchange contribution were assessed against the reference CC3/CCSD data. For PSB3, the accuracy of 2PA strengths increases in the following order: CC2 < CCSD < CC3, with the CC2 deviation from both higher-level methods exceeding 10% at 6-31+G* basis sets and 2% at aug-cc-pVDZ basis set. However, for PSB4, this trend is reversed and CC2-based 2PA strength is larger than the corresponding CCSD value. Among the DFT functionals investigated, CAM-B3LYP and BHandHLYP provide 2PA strengths in best compliance with reference data, however, with the error approaching an order of magnitude.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Boggio-Pasqua M, Jacquemin DM, Loos PF. Benchmarking CASPT3 Vertical Excitation Energies. J Chem Phys 2022; 157:014103. [DOI: 10.1063/5.0095887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on 280 reference vertical transition energies of various natures (singlet, triplet, valence, Rydberg, n → π∗, π → π∗, and double excitations) extracted from the QUEST database, we assess the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states. When one applies the disputable ionization- potential-electron-affinity (IPEA) shift, we show that CASPT3 provides a similar accuracy as its second-order counterpart, CASPT2, with the same mean absolute error of 0.11 eV. However, as already reported, we also observe that the accuracy of CASPT3 is almost insensitive to the IPEA shift, irrespective of the transition type and system size, with a small reduction of the mean absolute error to 0.09 eV when the IPEA shift is switched off.
Collapse
Affiliation(s)
| | - Denis M. Jacquemin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, University of Nantes, France
| | | |
Collapse
|
3
|
Huang M, Li C, Evangelista FA. Theoretical Calculation of Core-Excited States along Dissociative Pathways beyond Second-Order Perturbation Theory. J Chem Theory Comput 2021; 18:219-233. [PMID: 34964628 DOI: 10.1021/acs.jctc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We extend the multireference driven similarity renormalization (MR-DSRG) method to compute core-excited states by combining it with a GASSCF treatment of orbital relaxation and static electron correlation effects. We consider MR-DSRG treatments of dynamical correlation truncated at the level of perturbation theory (DSRG-MRPT2/3) and iterative linearized approximations with one- and two-body operators [MR-LDSRG(2)] in combination with a spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects. This approach is calibrated and tested on a series of 16 core-excited states of five closed- and open-shell diatomic molecules containing first-row elements (C, N, and O). All GASSCF-MR-DSRG theories show excellent agreement with experimental adiabatic transitions energies, with mean absolute errors ranging between 0.17 and 0.35 eV, even for the challenging partially doubly excited states of the N2+ molecule. The vibrational structure of all these transitions, obtained from using a full potential energy scan, shows a mean absolute error as low as 25 meV for DSRG-MRPT2 and 12/13 meV for DSRG-MRPT3 and MR-LDSRG(2). We generally find that a treatment of dynamical correlation that goes beyond the second-order level in perturbation theory improves the accuracy of the potential energy surface, especially in the bond-dissociation region.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Grabarek D, Andruniów T. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. J Comput Chem 2018; 39:1720-1727. [PMID: 29727036 DOI: 10.1002/jcc.25346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 11/07/2022]
Abstract
The initial S1 excited-state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight-membered ring (locked-11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS-CASPT2, MS-CASPT2) as well as single-reference coupled-cluster CC2 method. The analysis of XMCQDPT2-based geometries reveals rather weak coupling between in-plane and out-of-plane structural evolution and minor energetical relaxation of three locked-11.8 conformers. Therefore, a strong coupling between bonds length inversion and backbone out-of-plane deformation resulting in a very steep S1 energy profile predicted by CASSCF/CASPT2 calculations is in clear contradiction with the reference XMCQDPT2 results. Even though CC2 method predicts good quality ground-state structures, the excited-state structures display more advanced torsional deformation leading to ca. 0.2 eV exaggerated energy relaxation and significantly red shifted (0.4-0.7 eV) emission maxima. According to our findings, the initial photoisomerization process in locked-11.8, and possibly in other RPSB analogs, studied fully (both geometries and energies) by multireference perturbation theory may be somewhat slower than predicted by CASSCF/CASPT2 or CC2 methods. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
5
|
Wolański Ł, Grabarek D, Andruniów T. Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal? J Comput Chem 2018; 39:1470-1480. [PMID: 29635695 DOI: 10.1002/jcc.25217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/07/2022]
Abstract
To account for systematic error of CASPT2 method empirical modification of the zeroth-order Hamiltonian with Ionization Potential-Electron Affinity (IPEA) shift was introduced. The optimized IPEA value (0.25 a.u.), called standard IPEA (S-IPEA), was recommended but due to its unsatisfactory performance in multiple metallic and organic compounds it has been questioned lately as a general parameter working properly for all molecules under CASPT2 study. As we are interested in Schiff bases of retinal, an important question emerging from this conflict of choice, to use or not to use S-IPEA, is whether the introduction of the modified zeroth-order Hamiltonian into CASPT2 ansatz does really improve their energetics. To achieve this goal, we assessed an impact of the IPEA shift value, in a range of 0-0.35 a.u., on vertical excitation energies to low-lying singlet states of two protonated (RPSBs) and two unprotonated (RSBs) Schiff bases of retinal for which experimental data in gas phase are available. In addition, an effect of geometry, basis set, and active space on computed VEEs is also reported. We find, that for these systems, the choice of S-IPEA significantly overestimates both S0 →S1 and S0 →S2 energies and the best theoretical estimate, in reference to the experimental data, is provided with either unmodified zeroth-order Hamiltonian or small value of the IPEA shift in a range of 0.05-0.15 a.u., depending on active space and basis set size, equilibrium geometry, and character of the excited state. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Łukasz Wolański
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
6
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
7
|
Crespo-Otero R, Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem Rev 2018; 118:7026-7068. [DOI: 10.1021/acs.chemrev.7b00577] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
8
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
9
|
Szefczyk B, Grabarek D, Walczak E, Andruniów T. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2. J Comput Chem 2017; 38:1799-1810. [PMID: 28512740 DOI: 10.1002/jcc.24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
This study provides gas-phase S1 excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S1 minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S1 minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S2 electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Borys Szefczyk
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|