1
|
Kidder KM, Noid WG. Analysis of mapping atomic models to coarse-grained resolution. J Chem Phys 2024; 161:134113. [PMID: 39365018 DOI: 10.1063/5.0220989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, Îmap(M), that results from the mapping.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Kidder KM, Shell MS, Noid WG. Surveying the energy landscape of coarse-grained mappings. J Chem Phys 2024; 160:054105. [PMID: 38310476 DOI: 10.1063/5.0182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/05/2024] Open
Abstract
Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a "phase transition" qualitatively distinguishes good and bad representations.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Tekpinar M, Neron B, Delarue M. Extracting Dynamical Correlations and Identifying Key Residues for Allosteric Communication in Proteins by correlationplus. J Chem Inf Model 2021; 61:4832-4838. [PMID: 34652149 DOI: 10.1021/acs.jcim.1c00742] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracting dynamical pairwise correlations and identifying key residues from large molecular dynamics trajectories or normal-mode analysis of coarse-grained models are important for explaining various processes like ligand binding, mutational effects, and long-distance interactions. Efficient and flexible tools to perform this task can provide new insights about residues involved in allosteric regulation and protein function. In addition, combining and comparing dynamical coupling information with sequence coevolution data can help to understand better protein function. To this aim, we developed a Python package called correlationplus to calculate, visualize, and analyze pairwise correlations. In this way, the package aids to identify key residues and interactions in proteins. The source code of correlationplus is available under LGPL version 3 at https://github.com/tekpinar/correlationplus. The current version of the package (0.2.0) can be installed with common installation methods like conda or pip in addition to source code installation. Moreover, docker images are also available for usage of the code without installation.
Collapse
Affiliation(s)
- Mustafa Tekpinar
- Unit of Architecture and Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Bertrand Neron
- Computational Biology Department, Bioinformatics and Biostatistics Hub, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Marc Delarue
- Unit of Architecture and Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, 25 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
4
|
González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Structural deformability induced in proteins of potential interest associated with COVID-19 by binding of homologues present in ivermectin: Comparative study based in elastic networks models. J Mol Liq 2021; 340:117284. [PMID: 34421159 PMCID: PMC8367659 DOI: 10.1016/j.molliq.2021.117284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The COVID-19 pandemic has accelerated the study of the potential of multi-target drugs (MTDs). The mixture of homologues called ivermectin (avermectin-B1a + avermectin-B1b) has been shown to be a MTD with potential antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the effect of each homologue on the flexibility and stiffness of proteins associated with COVID-19, described as ivermectin targets. We observed that each homologue was stably bound to the proteins studied and was able to induce detectable changes with Elastic Network Models (ENM). The perturbations induced by each homologue were characteristic of each compound and, in turn, were represented by a disruption of native intramolecular networks (interactions between residues). The homologues were able to slightly modify the conformation and stability of the connection points between the Cα atoms of the residues that make up the structural network of proteins (nodes), compared to free proteins. Each homologue was able to modified differently the distribution of quasi-rigid regions of the proteins, which could theoretically alter their biological activities. These results could provide a biophysical-computational view of the potential MTD mechanism that has been reported for ivermectin.
Collapse
Affiliation(s)
- Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología. Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Republica Bolivariana de Venezuela.,Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología. Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - Francelys V Fernández-Materán
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Laura Jeffreys
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ysaias J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Republica Bolivariana de Venezuela
| |
Collapse
|
5
|
Calligari P, Torsello M, Bortoli M, Orian L, Polimeno A. Modelling of Ca2+-promoted structural effects in wild type and post-translationally modified Connexin26. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1690653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Paolo Calligari
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
| | - Mauro Torsello
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
6
|
Botello-Smith WM, Jiang W, Zhang H, Ozkan AD, Lin YC, Pham CN, Lacroix JJ, Luo Y. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat Commun 2019; 10:4503. [PMID: 31582801 PMCID: PMC6776524 DOI: 10.1038/s41467-019-12501-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel's mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Collapse
Affiliation(s)
- Wesley M Botello-Smith
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Han Zhang
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Alper D Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Yi-Chun Lin
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Christine N Pham
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Jérôme J Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA.
| | - Yun Luo
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA.
| |
Collapse
|
7
|
Tekpinar M, Yildirim A. Only a Subset of Normal Modes is Sufficient to Identify Linear Correlations in Proteins. J Chem Inf Model 2018; 58:1947-1961. [DOI: 10.1021/acs.jcim.8b00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ahmet Yildirim
- Department of Physics, Siirt University, 56100 Siirt, Turkey
| |
Collapse
|
8
|
Mishra SK, Jernigan RL. Protein dynamic communities from elastic network models align closely to the communities defined by molecular dynamics. PLoS One 2018; 13:e0199225. [PMID: 29924847 PMCID: PMC6010283 DOI: 10.1371/journal.pone.0199225] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022] Open
Abstract
Dynamic communities in proteins comprise the cohesive structural units that individually exhibit rigid body motions. These can correspond to structural domains, but are usually smaller parts that move with respect to one another in a protein's internal motions, key to its functional dynamics. Previous studies emphasized their importance to understand the nature of ligand-induced allosteric regulation. These studies reported that mutations to key community residues can hinder transmission of allosteric signals among the communities. Usually molecular dynamic (MD) simulations (~ 100 ns or longer) have been used to identify the communities-a demanding task for larger proteins. In the present study, we propose that dynamic communities obtained from MD simulations can also be obtained alternatively with simpler models-the elastic network models (ENMs). To verify this premise, we compare the specific communities obtained from MD and ENMs for 44 proteins. We evaluate the correspondence in communities from the two methods and compute the extent of agreement in the dynamic cross-correlation data used for community detection. Our study reveals a strong correspondence between the communities from MD and ENM and also good agreement for the residue cross-correlations. Importantly, we observe that the dynamic communities from MD can be closely reproduced with ENMs. With ENMs, we also compare the community structures of stable and unstable mutant forms of T4 Lysozyme with its wild-type. We find that communities for unstable mutants show substantially poorer agreement with the wild-type communities than do stable mutants, suggesting such ENM-based community structures can serve as a means to rapidly identify deleterious mutants.
Collapse
Affiliation(s)
- Sambit Kumar Mishra
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
9
|
Gerolin M, Zerbetto M, Moretto A, Formaggio F, Toniolo C, van Son M, Shabestari MH, Huber M, Calligari P, Polimeno A. Integrated Computational Approach to the Electron Paramagnetic Resonance Characterization of Rigid 3 10-Helical Peptides with TOAC Nitroxide Spin Labels. J Phys Chem B 2017; 121:4379-4387. [PMID: 28422504 PMCID: PMC5628910 DOI: 10.1021/acs.jpcb.7b01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We address the interpretation, via
an integrated computational
approach, of the experimental continuous-wave electron paramagnetic
resonance (cw-EPR) spectra of a complete set of conformationally highly
restricted, stable 310-helical peptides from hexa- to nonamers,
each bis-labeled with nitroxide radical-containing TOAC (4-amino-1-oxyl-2,2,6,6-tetramethylpiperidine-4-carboxylic
acid) residues. The usefulness of TOAC for this type of analysis has
been shown already to be due to its cyclic piperidine side chain,
which is rigidly connected to the peptide backbone α-carbon.
The TOAC α-amino acids are separated by two, three, four, and
five intervening residues. This set of compounds has allowed us to
modulate both the radical···radical distance and the
relative orientation parameters. To further validate our conclusion,
a comparative analysis has been carried out on three singly TOAC-labeled
peptides of similar main-chain length.
Collapse
Affiliation(s)
- Marco Gerolin
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy.,Department of Chemistry, École Normale Supérieure, UPMC University of Paris 06, CNRS, Laboratory of Biomolecules , 75005 Paris, France
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Alessandro Moretto
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Martin van Son
- Huygens-Kamerlingh Onnes Laboratory, Leiden University , 2300RA Leiden, The Netherlands
| | | | - Martina Huber
- Huygens-Kamerlingh Onnes Laboratory, Leiden University , 2300RA Leiden, The Netherlands
| | - Paolo Calligari
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Antonino Polimeno
- Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| |
Collapse
|
10
|
Barbeau X, Mathieu P, Paquin JF, Lagüe P. Characterization of the structure, dynamics and allosteric pathways of human NPP1 in its free form and substrate-bound complex from molecular modeling. MOLECULAR BIOSYSTEMS 2017; 13:1058-1069. [DOI: 10.1039/c7mb00095b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report 3D structure modeling and extensive molecular dynamics simulations of NPP1 complemented with a dynamical network analysis.
Collapse
Affiliation(s)
- Xavier Barbeau
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | | | - Jean-François Paquin
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | - Patrick Lagüe
- PROTEO
- The Quebec Network for Research on Protein Function
- Engineering
- and Applications
- Canada
| |
Collapse
|