1
|
Xiong X, Zhang Y, Wu W, Su P. Energy decomposition analysis method with the DFT-in-xTB embedding strategy for intermolecular interactions in large systems. J Chem Phys 2025; 162:124103. [PMID: 40125674 DOI: 10.1063/5.0258177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
In this work, an energy decomposition analysis (EDA) method, termed DM-EDA(EB), is introduced to explore intermolecular interactions in large systems by employing a DFT-in-xTB embedding scheme. DM-EDA(EB) integrates density matrix-based EDA (DM-EDA) with the GFNn-xTB method to decompose the total interaction energy into electrostatic, exchange-repulsion, polarization, and correlation terms. Test cases demonstrate that DM-EDA(EB) can accurately analyze total interaction energies in large systems with the computational efficiency comparable to GFNn-xTB. Notably, by using the appropriate partition strategy, DM-EDA(EB) is able to provide quantificational knowledge of individual interactions in large assemblies.
Collapse
Affiliation(s)
- Xuewei Xiong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yueyang Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
2
|
Song C, Wang LP. A Polarizable QM/MM Model That Combines the State-Averaged CASSCF and AMOEBA Force Field for Photoreactions in Proteins. J Chem Theory Comput 2024. [PMID: 39088696 DOI: 10.1021/acs.jctc.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
This study presents the polarizable quantum mechanics/molecular mechanics (QM/MM) embedding of the state-averaged complete active space self-consistent field (SA-CASSCF) in the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field for the purpose of studying photoreactions in protein environments. We describe two extensions of our previous work that combine SA-CASSCF with AMOEBA water models, allowing it to be generalized to AMOEBA models for proteins and other macromolecules. First, we discuss how our QM/MM model accounts for the discrepancy between the direct and polarization electric fields that arises in the AMOEBA description of intramolecular polarization. A second improvement is the incorporation of link atom schemes to treat instances in which the QM/MM boundary goes through covalent bonds. A single-link atom scheme and double-link atom scheme are considered in this work, and we will discuss how electrostatic interaction, van der Waals interaction, and various kinds of valence terms are treated across the boundary. To test the accuracy of the link atom scheme, we will compare QM/MM with full QM calculations and study how the errors in ground state properties, excited state properties, and excitation energies change when tuning the parameters in the link atom scheme. We will also test the new SA-CASSCF/AMOEBA method on an elementary reaction step in NanoLuc, an artificial bioluminescence luciferase. We will show how the reaction mechanism is different when calculated in the gas phase, in polarizable continuum medium (PCM), versus in protein AMOEBA models.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Xiong X, Friedman R, Wu W, Su P. QM/MM-Based Energy Decomposition Analysis Method for Large Systems. J Phys Chem A 2024. [PMID: 38687960 DOI: 10.1021/acs.jpca.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this work, a QM/MM-based EDA method, called GKS-EDA(QM/MM), is proposed. As an extension of GKS-EDA, this scheme divides the total interaction energy into electrostatic, exchange-repulsion, polarization, and correlation/dispersion terms. GKS-EDA(QM/MM) can be applied to describe the interactions of large-scale systems combined with various QM/MM platforms. By using the examples of a hydrated hydronium ion complex in water solution, the barnase-barstar complex, and MMP-13-pyrimidinetrione in a metalloprotein, the capability of GKS-EDA(QM/MM) for various interactions in large systems is validated.
Collapse
Affiliation(s)
- Xuewei Xiong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
4
|
Bondanza M, Nottoli T, Nottoli M, Cupellini L, Lipparini F, Mennucci B. The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics. J Chem Phys 2024; 160:134106. [PMID: 38557842 DOI: 10.1063/5.0198251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
We present a new library designed to provide a simple and straightforward way to implement QM/AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) and other polarizable QM/MM (Molecular Mechanics) methods based on induced point dipoles. The library, herein referred to as OpenMMPol, is free and open-sourced and is engineered to address the increasing demand for accurate and efficient QM/MM simulations. OpenMMPol is specifically designed to allow polarizable QM/MM calculations of ground state energies and gradients and excitation properties. Key features of OpenMMPol include a modular architecture facilitating extensibility, parallel computing capabilities for enhanced performance on modern cluster architectures, a user-friendly interface for intuitive implementation, and a simple and flexible structure for providing input data. To show the capabilities offered by the library, we present an interface with PySCF to perform QM/AMOEBA molecular dynamics, geometry optimization, and excited-state calculation based on (time-dependent) density functional theory.
Collapse
Affiliation(s)
- Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michele Nottoli
- Institute of Applied Analysis and Numerical Simulation, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
5
|
Pérez-Barcia Á, Cárdenas G, Nogueira JJ, Mandado M. Effect of the QM Size, Basis Set, and Polarization on QM/MM Interaction Energy Decomposition Analysis. J Chem Inf Model 2023; 63:882-897. [PMID: 36661314 PMCID: PMC9930123 DOI: 10.1021/acs.jcim.2c01184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, an Energy Decomposition Analysis (EDA) scheme extended to the framework of QM/MM calculations in the context of electrostatic embeddings (QM/MM-EDA) including atomic charges and dipoles is applied to assess the effect of the QM region size on the convergence of the different interaction energy components, namely, electrostatic, Pauli, and polarization, for cationic, anionic, and neutral systems interacting with a strong polar environment (water). Significant improvements are found when the bulk solvent environment is described by a MM potential in the EDA scheme as compared to pure QM calculations that neglect bulk solvation. The predominant electrostatic interaction requires sizable QM regions. The results reported here show that it is necessary to include a surprisingly large number of water molecules in the QM region to obtain converged values for this energy term, contrary to most cluster models often employed in the literature. Both the improvement of the QM wave function by means of a larger basis set and the introduction of polarization into the MM region through a polarizable force field do not translate to a faster convergence with the QM region size, but they lead to better results for the different interaction energy components. The results obtained in this work provide insight into the effect of each energy component on the convergence of the solute-solvent interaction energy with the QM region size. This information can be used to improve the MM FFs and embedding schemes employed in QM/MM calculations of solvated systems.
Collapse
Affiliation(s)
- Álvaro Pérez-Barcia
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain
| | - Gustavo Cárdenas
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain,Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049Madrid, Spain,E-mail:
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain,E-mail:
| |
Collapse
|
6
|
Song C. State averaged CASSCF in AMOEBA polarizable water model for simulating nonadiabatic molecular dynamics with nonequilibrium solvation effects. J Chem Phys 2023; 158:014101. [PMID: 36610973 DOI: 10.1063/5.0131689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This paper presents a state-averaged complete active space self-consistent field (SA-CASSCF) in the atomic multipole optimized energetics for biomolecular application (AMOEBA) polarizable water model, which enables rigorous simulation of non-adiabatic molecular dynamics with nonequilibrium solvation effects. The molecular orbital and configuration interaction coefficients of the solute wavefunction, and the induced dipoles on solvent atoms, are solved by minimizing the state averaged energy variationally. In particular, by formulating AMOEBA water models and the polarizable continuum model (PCM) in a unified way, the algorithms developed for computing SA-CASSCF/PCM energies, analytical gradients, and non-adiabatic couplings in our previous work can be generalized to SA-CASSCF/AMOEBA by properly substituting a specific list of variables. Implementation of this method will be discussed with the emphasis on how the calculations of different terms are partitioned between the quantum chemistry and molecular mechanics codes. We will present and discuss results that demonstrate the accuracy and performance of the implementation. Next, we will discuss results that compare three solvent models that work with SA-CASSCF, i.e., PCM, fixed-charge force fields, and the newly implemented AMOEBA. Finally, the new SA-CASSCF/AMOEBA method has been interfaced with the ab initio multiple spawning method to carry out non-adiabatic molecular dynamics simulations. This method is demonstrated by simulating the photodynamics of the model retinal protonated Schiff base molecule in water.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Chemistry, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
7
|
Jónsson EÖ, Rasti S, Galynska M, Meyer J, Jónsson H. Transferable Potential Function for Flexible H 2O Molecules Based on the Single-Center Multipole Expansion. J Chem Theory Comput 2022; 18:7528-7543. [PMID: 36395502 DOI: 10.1021/acs.jctc.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A potential function is presented for describing a system of flexible H2O molecules based on the single-center multipole expansion (SCME) of the electrostatic interaction. The model, referred to as SCME/f, includes the variation of the molecular quadrupole moment as well as the dipole moment with changes in bond length and angle so as to reproduce results of high-level electronic structure calculations. The multipole expansion also includes fixed octupole and hexadecapole moments, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model contains five adjustable parameters related to the repulsive interaction and damping functions in the electrostatic and dispersion interactions. Their values are adjusted to reproduce the lowest energy isomers of small clusters, (H2O)n with n = 2-6, as well as measured properties of the ice Ih crystal. Subsequent calculations of the energy difference between the various isomer configurations of the clusters show that SCME/f gives good agreement with results of electronic structure calculations and represents a significant improvement over the previously presented rigid SCME potential function. Analysis of the vibrational frequencies of the clusters and structural properties of ice Ih crystal show the importance of accurately describing the variation of the quadrupole moment with molecular structures.
Collapse
Affiliation(s)
- Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| | - Soroush Rasti
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RALeiden, The Netherlands
| | - Marta Galynska
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RALeiden, The Netherlands
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| |
Collapse
|
8
|
Nicoli L, Giovannini T, Cappelli C. Assessing the quality of QM/MM approaches to describe vacuo-to-water solvatochromic shifts. J Chem Phys 2022; 157:214101. [PMID: 36511555 DOI: 10.1063/5.0118664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The performance of different quantum mechanics/molecular mechanics embedding models to compute vacuo-to-water solvatochromic shifts is investigated. In particular, both nonpolarizable and polarizable approaches are analyzed and computed results are compared to reference experimental data. We show that none of the approaches outperform the others and that errors strongly depend on the nature of the molecular transition to be described. Thus, we prove that the best choice of embedding model highly depends on the molecular system and that the use of a specific approach as a black box can lead to significant errors and, sometimes, totally wrong predictions.
Collapse
Affiliation(s)
- Luca Nicoli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
9
|
Gokcan H, Isayev O. Learning molecular potentials with neural networks. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hatice Gokcan
- Department of Chemistry, Mellon College of Science Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
10
|
López R, Díaz N, Francisco E, Martín-Pendás A, Suárez D. QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach. J Chem Inf Model 2022; 62:1510-1524. [PMID: 35212531 PMCID: PMC8965874 DOI: 10.1021/acs.jcim.1c01372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interacting quantum atoms (IQA) method decomposes the quantum mechanical (QM) energy of a molecular system in terms of one- and two-center (atomic) contributions within the context of the quantum theory of atoms in molecules. Here, we demonstrate that IQA, enhanced with molecular mechanics (MM) and Poisson-Boltzmann surface-area (PBSA) solvation methods, is naturally extended to the realm of hybrid QM/MM methodologies, yielding intra- and inter-residue energy terms that characterize all kinds of covalent and noncovalent bonding interactions. To test the robustness of this approach, both metal-water interactions and QM/MM boundary artifacts are characterized in terms of the IQA descriptors derived from QM regions of varying size in Zn(II)- and Mg(II)-water clusters. In addition, we analyze a homologous series of inhibitors in complex with a matrix metalloproteinase (MMP-12) by carrying out QM/MM-PBSA calculations on their crystallographic structures followed by IQA energy decomposition. Overall, these applications not only show the advantages of the IQA QM/MM approach but also address some of the challenges lying ahead for expanding the QM/MM methodology.
Collapse
Affiliation(s)
- Roberto López
- Departamento de Química y Física Aplicadas, Universidad de León, Facultad de Biología, Campus de Vegazana s/n, 24071 León (Castilla y León), Spain
| | - Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, Facultad de Química, Julián Clavería 8, 33006 Oviedo (Asturias), Spain
| | - Evelio Francisco
- Departamento de Química Física y Analítica, Universidad de Oviedo, Facultad de Química, Julián Clavería 8, 33006 Oviedo (Asturias), Spain
| | - Angel Martín-Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, Facultad de Química, Julián Clavería 8, 33006 Oviedo (Asturias), Spain
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Facultad de Química, Julián Clavería 8, 33006 Oviedo (Asturias), Spain
| |
Collapse
|
11
|
Uribe L, Gómez S, Giovannini T, Egidi F, Restrepo A. An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO 2. Phys Chem Chem Phys 2021; 23:14857-14872. [PMID: 34223573 DOI: 10.1039/d1cp00652e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate calculation of absorption spectra of aqueous NO2- requires rigorously sampling the quantum potential energy surfaces for microsolvation of NO2- with at least five explicit water molecules and embedding the resulting clusters in a continuum solvent accounting for the statistical weighted contributions of individual isomers. This method, which we address as ASCEC + PCM, introduces several desired features when compared against MD simulations derived QM/MM spectra: comparatively fewer explicit solvent molecules to be treated with expensive QM methods, the identification of equilibrium structures in the quantum PES to be used in further vibrational spectroscopy, and the unequivocal identification of cluster orbitals undergoing electronic transitions and charge transfer that originate the spectral bands.
Collapse
Affiliation(s)
- Lina Uribe
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Franco Egidi
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
12
|
Nochebuena J, Naseem-Khan S, Cisneros GA. Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2021; 11:e1515. [PMID: 34367343 PMCID: PMC8341087 DOI: 10.1002/wcms.1515] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/19/2020] [Indexed: 01/02/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) simulations are a popular approach to study various features of large systems. A common application of QM/MM calculations is in the investigation of reaction mechanisms in condensed-phase and biological systems. The combination of QM and MM methods to represent a system gives rise to several challenges that need to be addressed. The increase in computational speed has allowed the expanded use of more complicated and accurate methods for both QM and MM simulations. Here, we review some approaches that address several common challenges encountered in QM/MM simulations with advanced polarizable potentials, from methods to account for boundary across covalent bonds and long-range effects, to polarization and advanced embedding potentials.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| | - Sehr Naseem-Khan
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| |
Collapse
|
13
|
Chen H, Skylaris CK. Analysis of DNA interactions and GC content with energy decomposition in large-scale quantum mechanical calculations. Phys Chem Chem Phys 2021; 23:8891-8899. [PMID: 33876048 DOI: 10.1039/d0cp06630c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GC content is a contributing factor to the stability of nucleic acids due to hydrogen bonding. More hydrogen bonding generally results in greater stability. Empirical evidence, however, has suggested that the GC content of a nucleic acid is a poor predictor of its stability, implying that there are sequence-dependent interactions besides what its GC content indicates. To examine how much such sequence-dependent interactions affect the interaction energies of double-stranded DNA (dsDNA) molecules, dsDNA molecules of different sequences are generated and examined in silico for variabilities in the interaction energies within each group of dsDNA molecules of the same GC content. Since the amount of hydrogen bonding depends on the GC content, holding the GC content fixed when examining the differences in interaction energies allows sequence-dependent interactions to be isolated. The nature of sequence-dependent interactions is then dissected using energy decomposition analysis (EDA). By using EDA, the components of the interactions that depend on the neighboring base pairs help explain some of the variability in the interaction energies of the dsDNA molecules despite having the same GC content. This work provides a new paradigm and tool for the study and analysis of the distributions of interaction components in dsDNA with the same GC content using EDA within large-scale quantum chemistry calculations.
Collapse
Affiliation(s)
- Han Chen
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | |
Collapse
|
14
|
Mao Y, Loipersberger M, Horn PR, Das A, Demerdash O, Levine DS, Prasad Veccham S, Head-Gordon T, Head-Gordon M. From Intermolecular Interaction Energies and Observable Shifts to Component Contributions and Back Again: A Tale of Variational Energy Decomposition Analysis. Annu Rev Phys Chem 2021; 72:641-666. [PMID: 33636998 DOI: 10.1146/annurev-physchem-090419-115149] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N2, and BF bound to a [Ru(II)(NH3)5]2 + moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential.
Collapse
Affiliation(s)
- Yuezhi Mao
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Matthias Loipersberger
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Paul R Horn
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Akshaya Das
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA; .,Department of Bioengineering and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Omar Demerdash
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA; .,Department of Bioengineering and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Daniel S Levine
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Srimukh Prasad Veccham
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Teresa Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA; .,Department of Bioengineering and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
15
|
Mao Y, Loipersberger M, Kron KJ, Derrick JS, Chang CJ, Sharada SM, Head-Gordon M. Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO 2 reduction catalysts. Chem Sci 2020; 12:1398-1414. [PMID: 34163903 PMCID: PMC8179122 DOI: 10.1039/d0sc05327a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
To facilitate computational investigation of intermolecular interactions in the solution phase, we report the development of ALMO-EDA(solv), a scheme that allows the application of continuum solvent models within the framework of energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs). In this scheme, all the quantum mechanical states involved in the variational EDA procedure are computed with the presence of solvent environment so that solvation effects are incorporated in the evaluation of all its energy components. After validation on several model complexes, we employ ALMO-EDA(solv) to investigate substituent effects on two classes of complexes that are related to molecular CO2 reduction catalysis. For [FeTPP(CO2-κC)]2- (TPP = tetraphenylporphyrin), we reveal that two ortho substituents which yield most favorable CO2 binding, -N(CH3)3 + (TMA) and -OH, stabilize the complex via through-structure and through-space mechanisms, respectively. The coulombic interaction between the positively charged TMA group and activated CO2 is found to be largely attenuated by the polar solvent. Furthermore, we also provide computational support for the design strategy of utilizing bulky, flexible ligands to stabilize activated CO2 via long-range Coulomb interactions, which creates biomimetic solvent-inaccessible "pockets" in that electrostatics is unscreened. For the reactant and product complexes associated with the electron transfer from the p-terphenyl radical anion to CO2, we demonstrate that the double terminal substitution of p-terphenyl by electron-withdrawing groups considerably strengthens the binding in the product state while moderately weakens that in the reactant state, which are both dominated by the substituent tuning of the electrostatics component. These applications illustrate that this new extension of ALMO-EDA provides a valuable means to unravel the nature of intermolecular interactions and quantify their impacts on chemical reactivity in solution.
Collapse
Affiliation(s)
- Yuezhi Mao
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
| | | | - Kareesa J Kron
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California Los Angeles CA 90089 USA
| | - Jeffrey S Derrick
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley CA 94720 USA
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
16
|
Mao Y, Levine DS, Loipersberger M, Horn PR, Head-Gordon M. Probing radical-molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals. Phys Chem Chem Phys 2020; 22:12867-12885. [PMID: 32510096 DOI: 10.1039/d0cp01933j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermolecular interactions between radicals and closed-shell molecules are ubiquitous in chemical processes, ranging from the benchtop to the atmosphere and extraterrestrial space. While energy decomposition analysis (EDA) schemes for closed-shell molecules can be generalized for studying radical-molecule interactions, they face challenges arising from the unique characteristics of the electronic structure of open-shell species. In this work, we introduce additional steps that are necessary for the proper treatment of radical-molecule interactions to our previously developed unrestricted Absolutely Localized Molecular Orbital (uALMO)-EDA based on density functional theory calculations. A "polarize-then-depolarize" (PtD) scheme is used to remove arbitrariness in the definition of the frozen wavefunction, rendering the ALMO-EDA results independent of the orientation of the unpaired electron obtained from isolated fragment calculations. The contribution of radical rehybridization to polarization energies is evaluated. It is also valuable to monitor the wavefunction stability of each intermediate state, as well as their associated spin density profiles, to ensure the EDA results correspond to a desired electronic state. These radical extensions are incorporated into the "vertical" and "adiabatic" variants of uALMO-EDA for studies of energy changes and property shifts upon complexation. The EDA is validated on two model complexes, H2O˙F and FH˙OH. It is then applied to several chemically interesting radical-molecule complexes, including the sandwiched and T-shaped benzene dimer radical cation, complexes of pyridine with benzene and naphthalene radical cations, binary and ternary complexes of the hydroxyl radical with water (˙OH(H2O) and ˙OH(H2O)2), and the pre-reactive complexes and transition states in the ˙OH + HCHO and ˙OH + CH3CHO reactions. These examples suggest that this second generation uALMO-EDA is a useful tool for furthering one's understanding of both energetic and property changes associated with radical-molecule interactions.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
17
|
Bradshaw RT, Dziedzic J, Skylaris CK, Essex JW. The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields? J Chem Inf Model 2020; 60:3131-3144. [DOI: 10.1021/acs.jcim.0c00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Richard T. Bradshaw
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Jónsson EÖ, Dohn AO, Jónsson H. Polarizable Embedding with a Transferable H 2O Potential Function I: Formulation and Tests on Dimer. J Chem Theory Comput 2019; 15:6562-6577. [PMID: 31689104 DOI: 10.1021/acs.jctc.9b00777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incorporation of mutual polarization in multiscale simulations where different regions of the system are treated at different level of theory is important in studies of, for example, electronic excitations and charge transfer processes. We present here an energy functional for describing a quantum mechanics/molecular mechanics (QM/MM) scheme that includes reciprocal polarization between the two subsystems. The inclusion of polarization alleviates shortcomings inherent in electrostatic embedding QM/MM models based on point-charge force fields. A density functional theory (DFT) description of the QM subsystem is coupled to a single center multipole expansion (SCME) description of H2O molecules in the MM subsystem that includes anisotropic dipole and quadrupole polarizability as well as static multipoles up to and including the hexadecapole. The energy functional and the coupling scheme is general and can be extended to arbitrary order in terms of both the static and induced moments. Tests of the energy surface for the H2O dimer show that the QM/MM results lie in between the pure DFT and pure SCME values. The consistency of the many-body contributions to the energy and analytical forces is demonstrated for an H2O pentamer.
Collapse
Affiliation(s)
- Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| |
Collapse
|
19
|
Loco D, Lagardère L, Cisneros GA, Scalmani G, Frisch M, Lipparini F, Mennucci B, Piquemal JP. Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chem Sci 2019; 10:7200-7211. [PMID: 31588288 PMCID: PMC6677116 DOI: 10.1039/c9sc01745c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, we present a general route to hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Molecular Dynamics for complex systems using a polarizable embedding. We extend the capabilities of our hybrid framework, combining the Gaussian and Tinker/Tinker-HP packages in the context of the AMOEBA polarizable force field to treat large (bio)systems where the QM and the MM subsystems are covalently bound, adopting pseudopotentials at the boundaries between the two regions. We discuss in detail the implementation and demonstrate the global energy conservation of our QM/MM Born-Oppenheimer molecular dynamics approach using Density Functional Theory. Finally, the approach is assessed on the electronic absorption properties of a 16 500 atom complex encompassing an organic dye embedded in a DNA matrix in solution, extending the hybrid method to a time-dependent Density Functional Theory approach. The results obtained comparing different partitions between the quantum and the classical subsystems also suggest that large QM portions are not necessary if accurate polarizable force fields are used in a variational formulation of the embedding, properly including the QM/MM mutual polarization.
Collapse
Affiliation(s)
- Daniele Loco
- Sorbonne Université , CNRS , Laboratoire de Chimie Théorique, LCT , Paris , France . ;
| | - Louis Lagardère
- Sorbonne Université , CNRS , Institut Parisien de Chimie Physique et Théorique, IP2CT , Paris , France
- Sorbonne Université , Institut des Sciences du Calcul et des Données, ISCD , Paris , France
| | | | | | | | - Filippo Lipparini
- Univerisita di Pisa , Dipartimento di Chimica e ChimicaIndustriale , Pisa , Italy
| | - Benedetta Mennucci
- Univerisita di Pisa , Dipartimento di Chimica e ChimicaIndustriale , Pisa , Italy
| | - Jean-Philip Piquemal
- Sorbonne Université , CNRS , Laboratoire de Chimie Théorique, LCT , Paris , France . ;
- Institut Universitaire de France, IUF , Paris , France
- The University of Texas at Austin , Department of Biomedical Engineering , TX , USA
| |
Collapse
|
20
|
Yang Z, Liu F, Steeves AH, Kulik HJ. Quantum Mechanical Description of Electrostatics Provides a Unified Picture of Catalytic Action Across Methyltransferases. J Phys Chem Lett 2019; 10:3779-3787. [PMID: 31244268 DOI: 10.1021/acs.jpclett.9b01555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methyl transferases (MTases) are a well-studied class of enzymes for which competing enzymatic enhancement mechanisms have been suggested, ranging from structural methyl group CH···X hydrogen bonds (HBs) to electrostatic- and charge-transfer-driven stabilization of the transition state (TS). We identified all Class I MTases for which reasonable resolution (<2.0 Å) crystal structures could be used to form catalytically competent ternary complexes for multiscale (i.e., quantum-mechanical/molecular-mechanical or QM/MM) simulation of the SN2 methyl transfer reaction coordinate. The four Class I MTases studied have both distinct functions (e.g., protein repair or biosynthesis) and substrate nucleophiles (i.e., C, N, or O). While CH···X HBs stabilize all reactant complexes, no universal TS stabilization role is found for these interactions in MTases. A consistent picture is instead obtained through analysis of charge transfer and electrostatics, wherein much of cofactor-substrate charge separation is maintained in the TS region, and electrostatic potential is correlated with substrate nucleophilicity (i.e., intrinsic reactivity).
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Fang Liu
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Adam H Steeves
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Heather J Kulik
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Giovannini T, Puglisi A, Ambrosetti M, Cappelli C. Polarizable QM/MM Approach with Fluctuating Charges and Fluctuating Dipoles: The QM/FQFμ Model. J Chem Theory Comput 2019; 15:2233-2245. [DOI: 10.1021/acs.jctc.8b01149] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
22
|
Dziedzic J, Head-Gordon T, Head-Gordon M, Skylaris CK. Mutually polarizable QM/MM model with in situ optimized localized basis functions. J Chem Phys 2019; 150:074103. [PMID: 30795653 DOI: 10.1063/1.5080384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with onetep linear-scaling density functional theory and the classical subsystem - with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully mutually polarizable. A total energy minimization scheme is employed for the Hamiltonian of the coupled QM/MM system. We demonstrate that, compared to simpler models using fixed basis sets, the additional flexibility offered by in situ optimized basis functions improves the accuracy of the QM/MM interface, but also poses new challenges, making the QM subsystem more prone to overpolarization and unphysical charge transfer due to increased charge penetration. We show how these issues can be efficiently solved by replacing the classical repulsive van der Waals term for QM/MM interactions with an interaction of the electronic density with a fixed, repulsive MM potential that mimics Pauli repulsion, together with a modest increase in the damping of QM/MM polarization. We validate our method, with particular attention paid to the hydrogen bond, in tests on water-ion pairs, the water dimer, first solvation shells of neutral and charged species, and solute-solvent interaction energies. As a proof of principle, we determine suitable repulsive potential parameters for water, K+, and Cl-. The mechanisms we employed to counteract the unphysical overpolarization of the QM subsystem are demonstrated to be adequate, and our approach is robust. We find that the inclusion of explicit polarization in the MM part of QM/MM improves agreement with fully QM calculations. Our model permits the use of minimal size QM regions and, remarkably, yields good energetics across the well-balanced QM/MM interface.
Collapse
Affiliation(s)
- Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Teresa Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
23
|
Lambrecht DS. Generalizing energy decomposition analysis to response properties to inform expedited predictive models. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
König G, Pickard FC, Huang J, Thiel W, MacKerell AD, Brooks BR, York DM. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes. Molecules 2018; 23:E2695. [PMID: 30347691 PMCID: PMC6222909 DOI: 10.3390/molecules23102695] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/01/2022] Open
Abstract
Maintaining a proper balance between specific intermolecular interactions and non-specific solvent interactions is of critical importance in molecular simulations, especially when predicting binding affinities or reaction rates in the condensed phase. The most rigorous metric for characterizing solvent affinity are solvation free energies, which correspond to a transfer from the gas phase into solution. Due to the drastic change of the electrostatic environment during this process, it is also a stringent test of polarization response in the model. Here, we employ both the CHARMM fixed charge and polarizable force fields to predict hydration free energies of twelve simple solutes. The resulting classical ensembles are then reweighted to obtain QM/MM hydration free energies using a variety of QM methods, including MP2, Hartree⁻Fock, density functional methods (BLYP, B3LYP, M06-2X) and semi-empirical methods (OM2 and AM1 ). Our simulations test the compatibility of quantum-mechanical methods with molecular-mechanical water models and solute Lennard⁻Jones parameters. In all cases, the resulting QM/MM hydration free energies were inferior to purely classical results, with the QM/MM Drude force field predictions being only marginally better than the QM/MM fixed charge results. In addition, the QM/MM results for different quantum methods are highly divergent, with almost inverted trends for polarizable and fixed charge water models. While this does not necessarily imply deficiencies in the QM models themselves, it underscores the need to develop consistent and balanced QM/MM interactions. Both the QM and the MM component of a QM/MM simulation have to match, in order to avoid artifacts due to biased solute⁻solvent interactions. Finally, we discuss strategies to improve the convergence and efficiency of multi-scale free energy simulations by automatically adapting the molecular-mechanics force field to the target quantum method.
Collapse
Affiliation(s)
- Gerhard König
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | - Frank C Pickard
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jing Huang
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
- School of Life Sciences, Westlake University, 18 Shilongshan Street, Hangzhou 310024, China.
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | - Alexander D MacKerell
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
|
26
|
Demerdash O, Mao Y, Liu T, Head-Gordon M, Head-Gordon T. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations. J Chem Phys 2018; 147:161721. [PMID: 29096520 DOI: 10.1063/1.4999905] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA's 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.
Collapse
Affiliation(s)
- Omar Demerdash
- Departments of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuezhi Mao
- Departments of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tianyi Liu
- Departments of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Departments of Chemistry, University of California, Berkeley, California 94720, USA
| | - Teresa Head-Gordon
- Departments of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Gökcan H, Kratz E, Darden TA, Piquemal JP, Cisneros GA. QM/MM Simulations with the Gaussian Electrostatic Model: A Density-based Polarizable Potential. J Phys Chem Lett 2018; 9:3062-3067. [PMID: 29775314 PMCID: PMC6069983 DOI: 10.1021/acs.jpclett.8b01412] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The use of advanced polarizable potentials in quantum mechanical/molecular mechanical (QM/MM) simulations has been shown to improve the overall accuracy of the calculation. We have developed a density-based potential called the Gaussian electrostatic model (GEM), which has been shown to provide very accurate environments for QM wave functions in QM/MM. In this contribution we present a new implementation of QM/GEM that extends our implementation to include all components (Coulomb, exchange-repulsion, polarization, and dispersion) for the total intermolecular interaction energy in QM/MM calculations, except for the charge-transfer term. The accuracy of the method is tested using a subset of water dimers from the water dimer potential energy surface reported by Babin et al. ( J. Chem. Theory Comput. 2013 9, 5395-5403). Additionally, results of the new implementation are contrasted with results obtained with the classical AMOEBA potential. Our results indicate that GEM provides an accurate MM environment with average root-mean-square error <0.15 kcal/mol for every intermolecular interaction energy component compared with SAPT2+3/aug-cc-pVTZ reference calculations.
Collapse
Affiliation(s)
- Hatice Gökcan
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Eric Kratz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Thomas A. Darden
- OpenEye Scientific Software, Santa Fe, New Mexico 87508, United States
| | - Jean-Philip Piquemal
- Department of Chemistry, Sorbonne Université, Paris 75005, France
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Insitute Universitaire de France, Paris 75231, France
| | - G. Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
28
|
Mao Y, Ge Q, Horn PR, Head-Gordon M. On the Computational Characterization of Charge-Transfer Effects in Noncovalently Bound Molecular Complexes. J Chem Theory Comput 2018; 14:2401-2417. [PMID: 29614855 DOI: 10.1021/acs.jctc.7b01256] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Charge-transfer (CT) is an important binding force in the formation of intermolecular complexes, and there have been a variety of theoretical models proposed to quantify this effect. These approaches, which typically rely on a definition of a "CT-free" state based on a partition of the system, sometimes yield significantly different results for a given intermolecular complex. Two widely used definitions of the "CT-free" state, the absolutely localized molecular orbitals (ALMO) method (where only on-fragment orbital mixings are permitted) and the constrained density functional theory (CDFT) approach (where fragment electron populations are fixed), are carefully examined in this work. Natural bond orbital (NBO) and the regularized symmetry-adapted perturbation theory (SAPT) are also briefly considered. Results for the ALMO and CDFT definitions of CT are compared on a broad range of model systems, including hydrogen-bonding systems, borane complexes, metal-carbonyl complexes, and complexes formed by water and metal cations. For most of these systems, CDFT yields a much smaller equilibrium CT energy compared to that given by the ALMO-based definition. This is mainly because the CDFT population constraint does not fully inhibit CT, which means that the CDFT "CT-free" state is in fact CT-contaminated. Examples of this contamination include (i) matching forward and backward donation (e.g., formic acid dimer) and (ii) unidirectional CT without changing fragment populations. The magnitude of the latter effect is quantified in systems such as the water dimer by employing a 3-space density constraint in addition to the orbital constraint. Furthermore, by means of the adiabatic EDA, it is shown that several observable effects of CT, such as the "pyramidalization" of the planar BH3 molecule upon the complexation with Lewis bases, already appear on the "CT-free" CDFT surface. These results reveal the essential distinctions between the ALMO and CDFT definitions of CT and suggest that the former is more consistent with accepted understanding of the role of CT in intermolecular binding.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Qinghui Ge
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
29
|
Loco D, Lagardère L, Caprasecca S, Lipparini F, Mennucci B, Piquemal JP. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. J Chem Theory Comput 2017; 13:4025-4033. [DOI: 10.1021/acs.jctc.7b00572] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniele Loco
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Louis Lagardère
- UPMC Univ. Paris
06, Institut des Sciences du Calcul et des Données, F-75005, Paris, France
| | - Stefano Caprasecca
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Filippo Lipparini
- Institut
für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Jean-Philip Piquemal
- UPMC Univ. Paris
06, UMR7616, Laboratoire de Chimie Théorique, F-75005, Paris, France
- Institut Universitaire de France, Paris
Cedex 05, 75231, France
- Department
of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|