1
|
Queizán M, Graña AM, Hermida-Ramón JM. A computational study of the aqueous pertechnetate anion: Elucidation of the hydration structure and spectroscopic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126056. [PMID: 40122017 DOI: 10.1016/j.saa.2025.126056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
A computational study of the TcO4- anion in water has been carried out, the study includes an analysis of the structure of the solvation shells, the hydration energy and the electronic transitions that affect the shape of the UV-Vis absorption spectrum. The solvated system was characterized by combined QM/MM molecular dynamics simulations. The second-order perturbation theory restricted active space method and the novel self-consistent field density matrix renormalization group approach were employed to describe the static correlation. Two distinct solvation shells were found with 24 and 65 water molecules, respectively. The water molecules surrounding the anion have a general orientation in which one hydrogen is oriented away from the oxyanion while the remaining atoms are at a similar distance. However, there are specific water molecules that form hydrogen bonds with the oxygens of the oxyanion, while others are oriented with their oxygen atom towards the anion. The observed excitations in the UV-Vis spectrum are of a T2 character, with the main source of the observed behavior being the charge transfer from oxygen atoms to the central technetium atom. The calculations show that the most intense band of the spectrum is broader and has a blue tail with respect to the gas phase spectrum. This difference is due to the lower symmetry caused by the aqueous environment, which allows different states to mix and leads to broadening of the band.
Collapse
Affiliation(s)
- Marta Queizán
- Universidade de Vigo, Departamento de Química Física, 36310 Vigo, Spain
| | - Ana M Graña
- Universidade de Vigo, Departamento de Química Física, 36310 Vigo, Spain
| | | |
Collapse
|
2
|
Larsson ED, Reinholdt P, Kongsted J, Hedegård ED. Exact Two-Component Relativistic Polarizable Density Embedding. J Chem Theory Comput 2025; 21:4447-4457. [PMID: 40249281 DOI: 10.1021/acs.jctc.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
We have implemented the fragment-based polarizable density embedding (PDE) model within a relativistic framework building on the eXact 2-Component (X2C) relativistic Hamiltonian, thereby taking the PDE method to a relativistic framework. The PDE model provides a robust solution to the electron-leakage problem, and we show that this newly implemented model offers an accurate way to model solvated systems possessing significant relativistic effects. To demonstrate the model's performance, we perform comparative calculations of the K- and L2,3-edge spectra of water-solvated cysteine (both protonated and deprotonated) with the X2C Hamiltonian. Particularly, with counterions such as Na+ in the solvent, electron leakage clearly shows in the older polarizable embedding model through spurious peaks in the spectra. However, when the PDE model is employed, these spurious peaks disappear.
Collapse
Affiliation(s)
- Ernst Dennis Larsson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| |
Collapse
|
3
|
Larsson ED, Reinholdt P, Hedegård ED, Kongsted J. Accuracy of One- and Two-Photon Intensities with the Extended Polarizable Density Embedding Model. J Phys Chem B 2023; 127:9905-9914. [PMID: 37948667 DOI: 10.1021/acs.jpcb.3c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The recently developed extended polarizable density embedding (PDE-X) model is evaluated for the spectroscopic properties of organic chromophores solvated in water, including both one- and two-photon absorption properties. The PDE-X embedding model systematically improves vertical excitation energies over the preceding polarizable density embedding model (PDE). PDE-X shows more modest improvements over existing embedding models for oscillator strengths and two-photon absorption cross-sections, which are more sensitive properties. We argue that the origin of these discrepancies is related to the description of polarization effects, suggesting directions for future development of the embedding model.
Collapse
Affiliation(s)
- Ernst Dennis Larsson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
4
|
Creutzberg J, Hedegård ED. A method to capture the large relativistic and solvent effects on the UV-vis spectra of photo-activated metal complexes. Phys Chem Chem Phys 2023; 25:6153-6163. [PMID: 36752122 DOI: 10.1039/d2cp04937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently developed a method based on relativistic time-dependent density functional theory (TD-DFT) that allows the calculation of electronic spectra in solution (Creutzberg, Hedegård, J. Chem. Theory Comput.18, 2022, 3671). This method treats the solvent explicitly with a classical, polarizable embedding (PE) description. Furthermore, it employs the complex polarization propagator (CPP) formalism which allows calculations on complexes with a dense population of electronic states (such complexes are known to be problematic for conventional TD-DFT). Here, we employ this method to investigate both the dynamic and electronic effects of the solvent for the excited electronic states of trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] in aqueous solution. This complex decomposes into species harmful to cancer cells under light irradiation. Thus, understanding its photo-physical properties may lead to a more efficient method to battle cancer. We quantify the effect of the underlying structure and dynamics by classical molecular mechanics simulations, refined with a subsequent DFT or semi-empirical optimization on a cluster. Moreover, we quantify the effect of employing different methods to set up the solvated system, e.g., how sensitive the results are to the method used for the refinement, and how large a solvent shell that is required. The electronic solvent effect is always included through a PE potential.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Lund, Sweden. .,Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
5
|
Kanemaru K, Watanabe Y, Yoshida N, Nakano H. Solvent effects in four-component relativistic electronic structure theory based on the reference interaction-site model. J Comput Chem 2022; 44:5-14. [PMID: 36190170 DOI: 10.1002/jcc.27009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022]
Abstract
A combined method of the Dirac-Hartree-Fock (DHF) method and the reference interaction-site model (RISM) theory is reported; this is the initial implementation of the coupling of the four-component relativistic electronic structure theory and an integral equation theory of molecular liquids. In the method, the DHF and RISM equations are solved self-consistently, and therefore the electronic structure of the solute, including relativistic effects, and the solvation structure are determined simultaneously. The formulation is constructed based on the variational principle with respect to the Helmholtz energy, and analytic free energy gradients are also derived using the variational property. The method is applied to the iodine ion (I- ), methyl iodide (CH3 I), and hydrogen chalcogenide (H2 X, where X = O-Po) in aqueous solutions, and the electronic structures of the solutes, as well as the solvation free energies and their component analysis, solvent distributions, and solute-solvent interactions, are discussed.
Collapse
Affiliation(s)
- Kodai Kanemaru
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Watanabe
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan.,Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Creutzberg J, Hedegård ED. Polarizable Embedding Complex Polarization Propagator in Four- and Two-Component Frameworks. J Chem Theory Comput 2022; 18:3671-3686. [PMID: 35549262 DOI: 10.1021/acs.jctc.1c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Explicit embedding methods combined with the complex polarization propagator (CPP) enable the modeling of spectroscopy for increasingly complex systems with a high density of states. We present the first derivation and implementation of the CPP in four- and exact-two-component (X2C) polarizable embedding (PE) frameworks. We denote the developed methods PE-4c-CPP and PE-X2C-CPP, respectively. We illustrate the methods by estimating the solvent effect on ultraviolet-visible (UV-vis) and X-ray atomic absorption (XAS) spectra of [Rh(H2O)6]3+ and [Ir(H2O)6]3+ immersed in aqueous solution. We moreover estimate solvent effects on UV-vis spectra of a platinum complex that can be photochemically activated (in water) to kill cancer cells. Our results clearly show that the inclusion of the environment is required: UV-vis and (to a lesser degree) XAS spectra can become qualitatively different from vacuum calculations. Comparison of PE-4c-CPP and PE-X2C-CPP methods shows that X2C essentially reproduces the solvent effect obtained with the 4c methods.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
7
|
Creutzberg J, Hedegård ED. Investigating the influence of relativistic effects on absorption spectra for platinum complexes with light-activated activity against cancer cells. Phys Chem Chem Phys 2021; 22:27013-27023. [PMID: 33210700 DOI: 10.1039/d0cp05143h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the first systematic investigation of relativistic effects on the UV-vis spectra of two prototype complexes for so-called photo-activated chemotherapy (PACT), trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] and cis-trans-cis-[Pt(N3)2(OH)2(NH3)2]. In PACT, design of new drugs requires in-depth understanding of the photo-activation mechanisms. A first step is usually to rationalize their UV-vis spectra for which time-dependent density functional theory (TD-DFT) is an indispensable tool. We carried out TD-DFT calculations with a systematic series of non-relativistic (NR), scalar-relativistic (SR), and four-component (4c) Hamiltonians. As expected, large differences are found between spectra calculated within 4c and NR frameworks, while the most intense features (found at higher energies below 300 nm) can be reasonably well reproduced within a SR framework. It is also shown that effective core potentials (ECPs) yield essentially similar results as all-electron SR calculations. Yet the underlying transitions can be strongly influenced by spin-orbit coupling, which is only present in the 4c framework: while this can affect both intense and less intense transitions in the spectra, the effect is most pronounced for weaker transitions at lower energies, above 300 nm. Since the investigated complexes are activated with light of wavelengths above 300 nm, employing a method with explicit inclusion of spin-orbit coupling may be crucial to rationalize the activation mechanism.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | | |
Collapse
|
8
|
Saue T, Bast R, Gomes ASP, Jensen HJA, Visscher L, Aucar IA, Di Remigio R, Dyall KG, Eliav E, Fasshauer E, Fleig T, Halbert L, Hedegård ED, Helmich-Paris B, Iliaš M, Jacob CR, Knecht S, Laerdahl JK, Vidal ML, Nayak MK, Olejniczak M, Olsen JMH, Pernpointner M, Senjean B, Shee A, Sunaga A, van Stralen JNP. The DIRAC code for relativistic molecular calculations. J Chem Phys 2020; 152:204104. [PMID: 32486677 DOI: 10.1063/5.0004844] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.
Collapse
Affiliation(s)
- Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Radovan Bast
- Department of Information Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Ignacio Agustín Aucar
- Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física-Facultad de Ciencias Exactas y Naturales, UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229, USA
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Elke Fasshauer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Timo Fleig
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Loïc Halbert
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Marta L Vidal
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Bruno Senjean
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ayaki Sunaga
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
| | - Joost N P van Stralen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Scheurer M, Reinholdt P, Kjellgren ER, Haugaard Olsen JM, Dreuw A, Kongsted J. CPPE: An Open-Source C++ and Python Library for Polarizable Embedding. J Chem Theory Comput 2019; 15:6154-6163. [PMID: 31580670 DOI: 10.1021/acs.jctc.9b00758] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a modular open-source library for polarizable embedding (PE) named CPPE. The library is implemented in C++, and it additionally provides a Python interface for rapid prototyping and experimentation in a high-level scripting language. Our library integrates seamlessly with existing quantum chemical program packages through an intuitive and minimal interface. Until now, CPPE has been interfaced to three packages, Q-Chem, Psi4, and PySCF. Furthermore, we show CPPE in action using all three program packages for a computational spectroscopy application. With CPPE, host program interfaces only require minor programming effort, paving the way for new combined methodologies and broader availability of the PE model.
Collapse
Affiliation(s)
- Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing , Heidelberg University , D-69120 Heidelberg , Germany.,Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , UiT the Arctic University of Norway , N-9037 Tromsø , Norway
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Heidelberg University , D-69120 Heidelberg , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|