1
|
Marques S, Kouba P, Legrand A, Sedlar J, Disson L, Planas-Iglesias J, Sanusi Z, Kunka A, Damborsky J, Pajdla T, Prokop Z, Mazurenko S, Sivic J, Bednar D. CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules. JACS AU 2024; 4:2228-2245. [PMID: 38938816 PMCID: PMC11200249 DOI: 10.1021/jacsau.4c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Computational study of the effect of drug candidates on intrinsically disordered biomolecules is challenging due to their vast and complex conformational space. Here, we developed a comparative Markov state analysis (CoVAMPnet) framework to quantify changes in the conformational distribution and dynamics of a disordered biomolecule in the presence and absence of small organic drug candidate molecules. First, molecular dynamics trajectories are generated using enhanced sampling, in the presence and absence of small molecule drug candidates, and ensembles of soft Markov state models (MSMs) are learned for each system using unsupervised machine learning. Second, these ensembles of learned MSMs are aligned across different systems based on a solution to an optimal transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3 therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in Alzheimer's disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42 more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
Collapse
Affiliation(s)
- Sérgio
M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Petr Kouba
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
- Faculty
of Electrical Engineering, Czech Technical
University in Prague, Technicka 2, Dejvice, Praha 6 166 27, Czech Republic
| | - Anthony Legrand
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Sedlar
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Lucas Disson
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Zainab Sanusi
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Antonin Kunka
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Tomas Pajdla
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Josef Sivic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| |
Collapse
|
2
|
Nilsson BL, Celebi Torabfam G, Dias CL. Peptide Self-Assembly into Amyloid Fibrils: Unbiased All-Atom Simulations. J Phys Chem B 2024; 128:3320-3328. [PMID: 38447080 PMCID: PMC11466223 DOI: 10.1021/acs.jpcb.3c07861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Protein self-assembly plays an important role in biological systems, accounting for the formation of mesoscopic structures that can be highly symmetric as in the capsid of viruses or disordered as in molecular condensates or exhibit a one-dimensional fibrillar morphology as in amyloid fibrils. Deposits of the latter in tissues of individuals with degenerative diseases like Alzheimer's and Parkinson's has motivated extensive efforts to understand the sequence of molecular events accounting for their formation. These studies aim to identify on-pathway intermediates that may be the targets for therapeutic intervention. This detailed knowledge of fibril formation remains obscure, in part due to challenges with experimental analyses of these processes. However, important progress is being achieved for short amyloid peptides due to advances in our ability to perform completely unbiased all-atom simulations of the self-assembly process. This perspective discusses recent developments, their implications, and the hurdles that still need to be overcome to further advance the field.
Collapse
Affiliation(s)
- Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627-0216, United States
| | - Gizem Celebi Torabfam
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
3
|
Wang K, Cai W. Binding mechanism of full-length Aβ40 peptide to a mixed lipid bilayer. Front Chem 2024; 12:1367793. [PMID: 38449479 PMCID: PMC10914957 DOI: 10.3389/fchem.2024.1367793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The destructive effect of Aβ peptides on membranes is an important source of its cytotoxicity in the pathogenesis of Alzheimer's disease. We have investigated the binding mechanism between the Aβ42 peptide and bilayer in our former work. However, as another abundant form of Aβ peptides in the physiological environment, the binding mechanism between Aβ40 peptide and the lipid bilayer still remains ambiguous. Hence, we performed all-atom simulations on the Aβ40 peptides with the lipid bilayer herein using replica exchange with the solute tempering 2 method. We obtained four major binding models with the hydrophobic C-terminus as the most preferable binding region. Hydrophobic residues and positively charged residues are the principal residues involved in the peptide-bilayer interactions. Aβ40 peptides in our simulation mainly adopt a β-rich conformation in both bound and unbound states. Besides, we determined peptide-water interactions and found that bound peptides prefer forming hydrogen bonds with water molecules than unbound peptides. Our findings herein may provide new insights for the in-depth understanding of the membrane-destructive mechanism of Aβ peptides.
Collapse
Affiliation(s)
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Ganesan V, Priya MH. Probing the Conformational Preference to β-Strand during Peptide Self-Assembly. J Phys Chem B 2023. [PMID: 37364023 DOI: 10.1021/acs.jpcb.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Alanine-rich tetrapeptides like A3K dominantly exist as polyproline II helices in dilute aqueous solutions. However, during self-assembly, based on the free energy calculation in implicit solvent for various peptide conformations, only the peptides in the β-strand conformation can be packed closely. This necessitates the conformational transition to the β-strand commonly observed during peptide self-assembly such as in amyloid fibril formation. In fact, the closest interpeptide distance of 4.8 Å is consistent with the interstrand distance determined from the X-ray diffraction pattern of many amyloid fibrils. The position of free energy minimum obtained from implicit solvent calculation matches exactly with the explicit solvent simulation through umbrella sampling when the peptide conformations are restrained, demonstrating the applicability of the former for rapid screening of peptide configurations favorable for self-assembly. The barrier in the free energy profile in the presence of water arises out of the entropic restriction on the interstitial water molecules while satisfying the hydrogen bonding of both the peptides by forming water mediated hydrogen bond bridge. Further, the high energy barrier observed for the β-strand suggests that peptides initially tend to self-assemble in the polyproline II structure to mitigate the desolvation energy cost; the transition to the β-strand would happen only in the later stage after crossing the barrier. The umbrella sampling simulations with peptides allowed to change conformations, relative to each other, confirm the dynamic conformational transition during the course of the self-assembly supporting the "dock and lock" mechanism suggested for amyloid fibrillar growth.
Collapse
Affiliation(s)
- Vidhya Ganesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - M Hamsa Priya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
5
|
Wang K, Shao X, Cai W. Binding Models of Aβ42 Peptide with Membranes Explored by Molecular Simulations. J Chem Inf Model 2022; 62:6482-6493. [PMID: 35984710 DOI: 10.1021/acs.jcim.2c00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the factors contributing to the toxicity of amyloid-β (Aβ) peptides is the destruction of membrane integrity through Aβ peptide-membrane interactions. The binding of Aβ peptides to membranes has been studied by experiments and theoretical simulations extensively. The exact binding mechanism, however, still remains elusive. In the present study, the molecular basis of the peptide-bilayer binding mechanism of the full-length Aβ42 monomer with POPC/POPS/CHOL bilayers is investigated by all-atom (AA) simulations. Three main binding models in coil, bend, and turn structures are obtained. Model 1 of the three models with the central hydrophobic core (CHC) buried inside the membrane is the dominant binding model. The structural features of the peptide, the peptide-bilayer interacting regions, the intrapeptide interactions, and peptide-water interactions are studied. The binding of the Aβ42 monomer to the POPC/POPS/CHOL bilayer is also explored by coarse-grained (CG) simulations as a complement. Both the AA and CG simulations show that residues in CHC prefer forming interactions with the bilayer, indicating the crucial role of CHC in peptide-bilayer binding. Our results can provide new insights for the investigation of the peptide-bilayer binding mechanism of the Aβ peptide.
Collapse
Affiliation(s)
- Ke Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Nguyen PH, Sterpone F, Derreumaux P. Self-Assembly of Amyloid-Beta (Aβ) Peptides from Solution to Near In Vivo Conditions. J Phys Chem B 2022; 126:10317-10326. [PMID: 36469912 DOI: 10.1021/acs.jpcb.2c06375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the atomistic resolution changes during the self-assembly of amyloid peptides or proteins is important to develop compounds or conditions to alter the aggregation pathways and suppress the toxicity and potentially aid in the development of drugs. However, the complexity of protein aggregation and the transient order/disorder of oligomers along the pathways to fibril are very challenging. In this Perspective, we discuss computational studies of amyloid polypeptides carried out under various conditions, including conditions closely mimicking in vivo and point out the challenges in obtaining physiologically relevant results, focusing mainly on the amyloid-beta Aβ peptides.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| |
Collapse
|
7
|
Chatterjee S, Nam Y, Salimi A, Lee JY. Monitoring early-stage β-amyloid dimer aggregation by histidine site-specific two-dimensional infrared spectroscopy in a simulation study. Phys Chem Chem Phys 2022; 24:18691-18702. [PMID: 35899740 DOI: 10.1039/d2cp02479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring early-stage β-amyloid (Aβ) dimerization is a formidable challenge for understanding neurological diseases. We compared β-sheet formation and histidine site-specific two-dimensional infrared (2D IR) spectroscopic signatures of Aβ dimers with different histidine states (δ; Nδ1-H, ε; Nε2-H, or π; both protonated). Molecular dynamics (MD) simulations revealed that β-sheet formation is favored for the δδδ:δδδ and πππ:πππ tautomeric isomers showing strong couplings and frequent contacts between the central hydrophobic core and C-terminus compared with the εεε:εεε isomer. Characteristic blue-shifts in the 2D IR central bands were observed upon monomer-dimer transformation. The εεε:εεε dimer exhibited larger frequency shifts than δδδ:δδδ and πππ:πππ implying that the red-shift may have a correlation with Nδ1-H(δ) protonation. Our results support the tautomerization/protonation hypothesis that attributes Aβ misfolding to histidine tautomers as a possible primary initiator for Aβ aggregation and facilitates the application of histidine site-specific 2D IR spectroscopy for studying early-stage Aβ self-assembly.
Collapse
Affiliation(s)
| | - Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. .,Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| |
Collapse
|
8
|
Tang X, Han W. Multiscale Exploration of Concentration-Dependent Amyloid-β(16-21) Amyloid Nucleation. J Phys Chem Lett 2022; 13:5009-5016. [PMID: 35649244 DOI: 10.1021/acs.jpclett.2c00685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic descriptions of peptide aggregation nucleation remain lacking due to the difficulty of exploring complex configurational spaces on long time scales. To elucidate this process, we develop a multiscale approach combining a metadynamics-based method with cluster statistical mechanics to derive concentration-dependent free energy surfaces of nucleation at near-atomic resolution. A kinetic transition network of nucleation is then constructed and employed to systematically explore nucleation pathways and kinetics through stochastic simulations. This approach is applied to describe Aβ16-21 amyloid nucleation, revealing a two-step mechanism involving disordered aggregates at millimolar concentration, and an unexpected mechanism at submillimolar concentrations that exhibits kinetics reminiscent of classical nucleation but atypical pathways involving growing clusters with structured cores wrapped by disordered surface. When this atypical mechanism is operative, critical nucleus size can be reflected by the nucleation reaction order. Collectively, our approach paves the way for a more quantitative and detailed understanding of peptide aggregation nucleation.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
9
|
Constructing conformational library for amyloid-β42 dimers as the smallest toxic oligomers using two CHARMM force fields. J Mol Graph Model 2022; 115:108207. [DOI: 10.1016/j.jmgm.2022.108207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
|
10
|
Xie H, Rojas A, Maisuradze GG, Khelashvili G. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation. ACS Chem Neurosci 2022; 13:987-1001. [PMID: 35258946 PMCID: PMC8986627 DOI: 10.1021/acschemneuro.1c00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal aggregation of amyloid β (Aβ) peptides into fibrils plays a critical role in the development of Alzheimer's disease. A two-stage "dock-lock" model has been proposed for the Aβ fibril elongation process. However, the mechanisms of the Aβ monomer-fibril binding process have not been elucidated with the necessary molecular-level precision, so it remains unclear how the lock phase dynamics leads to the overall in-register binding of the Aβ monomer onto the fibril. To gain mechanistic insights into this critical step during the fibril elongation process, we used molecular dynamics (MD) simulations with a physics-based coarse-grained UNited-RESidue (UNRES) force field and sampled extensively the dynamics of the lock phase process, in which a fibril-bound Aβ(9-40) peptide rearranged to establish the native docking conformation. Analysis of the MD trajectories with Markov state models was used to quantify the kinetics of the rearrangement process and the most probable pathways leading to the overall native docking conformation of the incoming peptide. These revealed a key intermediate state in which an intra-monomer hairpin is formed between the central core amyloidogenic patch 18VFFA21 and the C-terminal hydrophobic patch 34LMVG37. This hairpin structure is highly favored as a transition state during the lock phase of the fibril elongation. We propose a molecular mechanism for facilitation of the Aβ fibril elongation by amyloidogenic hydrophobic patches.
Collapse
Affiliation(s)
- Hengyi Xie
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
| | - Ana Rojas
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
11
|
Blanco MA. Computational models for studying physical instabilities in high concentration biotherapeutic formulations. MAbs 2022; 14:2044744. [PMID: 35282775 PMCID: PMC8928847 DOI: 10.1080/19420862.2022.2044744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of the behavior of concentrated protein solutions is particularly advantageous in early development stages of biotherapeutics when material availability is limited and a large set of formulation conditions needs to be explored. This review provides an overview of the different computational paradigms that have been successfully used in modeling undesirable physical behaviors of protein solutions with a particular emphasis on high-concentration drug formulations. This includes models ranging from all-atom simulations, coarse-grained representations to macro-scale mathematical descriptions used to study physical instability phenomena of protein solutions such as aggregation, elevated viscosity, and phase separation. These models are compared and summarized in the context of the physical processes and their underlying assumptions and limitations. A detailed analysis is also given for identifying protein interaction processes that are explicitly or implicitly considered in the different modeling approaches and particularly their relations to various formulation parameters. Lastly, many of the shortcomings of existing computational models are discussed, providing perspectives and possible directions toward an efficient computational framework for designing effective protein formulations.
Collapse
Affiliation(s)
- Marco A. Blanco
- Materials and Biophysical Characterization, Analytical R & D, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
12
|
Nguyen TH, Nguyen PH, Ngo ST, Derreumaux P. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022; 27:molecules27041395. [PMID: 35209177 PMCID: PMC8879133 DOI: 10.3390/molecules27041395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease displays aggregates of the amyloid-beta (Aβ) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aβ oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aβ42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aβ42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17–F20 and L30–M35 with a non-negligible contribution of loop residues D22–K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aβ42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer’s disease.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Rahman MU, Song K, Da LT, Chen HF. Early aggregation mechanism of Aβ 16-22 revealed by Markov state models. Int J Biol Macromol 2022; 204:606-616. [PMID: 35134456 DOI: 10.1016/j.ijbiomac.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Aβ16-22 is believed to have critical role in early aggregation of full length amyloids that are associated with the Alzheimer's disease and can aggregate to form amyloid fibrils. However, the early aggregation mechanism is still unsolved. Here, multiple long-term molecular dynamics simulations combining with Markov state model were used to probe the early oligomerization mechanism of Aβ16-22 peptides. The identified dimeric form adopted either globular random-coil or extended β-strand like conformations. The observed dimers of these variants shared many overall conformational characteristics but differed in several aspects at detailed level. In all cases, the most common type of secondary structure was intermolecular antiparallel β-sheets. The inter-state transitions were very frequent ranges from few to hundred nanoseconds. More strikingly, those states which contain fraction of β secondary structure and significant amount of extended coiled structures, therefore exposed to the solvent, were majorly participated in aggregation. The assembly of low-energy dimers, in which the peptides form antiparallel β sheets, occurred by multiple pathways with the formation of an obligatory intermediates. We proposed that these states might facilitate the Aβ16-22 aggregation through a significant component of the conformational selection mechanism, because they might increase the aggregates population by promoting the inter-chain hydrophobic and the hydrogen bond contacts. The formation of early stage antiparallel β sheet structures is critical for oligomerization, and at the same time provided a flat geometry to seed the ordered β-strand packing of the fibrils. Our findings hint at reorganization of this part of the molecule as a potentially critical step in Aβ aggregation and will insight into early oligomerization for large β amyloids.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyuan Song
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Center for Bioinformation Technology, Shanghai, 200235, China.
| |
Collapse
|
14
|
Yuan M, Tang X, Han W. Anatomy and Formation Mechanisms of Early Amyloid-β Oligomers with Lateral Branching: Graph Network Analysis on Large-Scale Simulations. Chem Sci 2022; 13:2649-2660. [PMID: 35356670 PMCID: PMC8890322 DOI: 10.1039/d1sc06337e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Oligomeric amyloid-β aggregates (AβOs) effectively trigger Alzheimer's disease-related toxicity, generating great interest in understanding their structures and formation mechanisms. However, AβOs are heterogeneous and transient, making their structure and formation difficult to study. Here, we performed graph network analysis of tens of microsecond massive simulations of early amyloid-β (Aβ) aggregations at near-atomic resolution to characterize AβO structures with sizes up to 20-mers. We found that AβOs exhibit highly curvilinear, irregular shapes with occasional lateral branches, consistent with recent cryo-electron tomography experiments. We also found that Aβ40 oligomers were more likely to develop branches than Aβ42 oligomers, explaining an experimental observation that only Aβ40 was trapped in network-like aggregates and exhibited slower fibrillization kinetics. Moreover, AβO architecture dissection revealed that their curvilinear appearance is related to the local packing geometries of neighboring peptides and that Aβ40's greater branching ability originates from specific C-terminal interactions at branching interfaces. Finally, we demonstrate that whether Aβ oligomerization causes oligomers to elongate or to branch depends on the sizes and shapes of colliding aggregates. Collectively, this study provides bottom-up structural information for understanding early Aβ aggregation and AβO toxicity. Graph network analysis on large-scale simulations uncovers the differential branching behaviours of large Aβ40 and Aβ42 oligomers.![]()
Collapse
Affiliation(s)
- Miao Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
15
|
Nguyen PH, Tufféry P, Derreumaux P. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods Mol Biol 2022; 2405:95-113. [PMID: 35298810 DOI: 10.1007/978-1-0716-1855-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibril formation is an intrinsic property of short peptides, non-disease proteins, and proteins associated with neurodegenerative diseases. Aggregates of the Aβ and tau proteins, the α-synuclein protein, and the prion protein are observed in the brain of Alzheimer's, Parkinson's, and prion disease patients, respectively. Due to the transient short-range and long-range interactions of all species and their high aggregation propensities, the conformational ensemble of these devastating proteins, the exception being for the monomeric prion protein, remains elusive by standard structural biology methods in bulk solution and in lipid membranes. To overcome these limitations, an increasing number of simulations using different sampling methods and protein models have been performed. In this chapter, we first review our main contributions to the field of amyloid protein simulations aimed at understanding the early aggregation steps of short linear amyloid peptides, the conformational ensemble of the Aβ40/42 dimers in bulk solution, and the stability of Aβ aggregates in lipid membrane models. Then we focus on our studies on the interactions of amyloid peptides/inhibitors to prevent aggregation, and long amyloid sequences, including new results on a monomeric tau construct.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
16
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
17
|
Okumura H, Itoh SG. Molecular dynamics simulations of amyloid-β(16-22) peptide aggregation at air-water interfaces. J Chem Phys 2021; 152:095101. [PMID: 33480728 DOI: 10.1063/1.5131848] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oligomers of amyloid-β (Aβ) peptides are known to be related to Alzheimer's disease, and their formation is accelerated at hydrophilic-hydrophobic interfaces, such as the cell membrane surface and air-water interface. Here, we report molecular dynamics simulations of aggregation of Aβ(16-22) peptides at air-water interfaces. First, 100 randomly distributed Aβ(16-22) peptides moved to the interface. The high concentration of peptides then accelerated their aggregation and formation of antiparallel β-sheets. Two layers of oligomers were observed near the interface. In the first layer from the interface, the oligomer with less β-bridges exposed the hydrophobic residues to the air. The second layer consisted of oligomers with more β-bridges that protruded into water. They are more soluble in water because the hydrophobic residues are covered by N- and C-terminal hydrophilic residues that are aligned well along the oligomer edge. These results indicate that amyloid protofibril formation mainly occurs in the second layer.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
18
|
Ngo ST, Nguyen PH, Derreumaux P. Cholesterol Molecules Alter the Energy Landscape of Small Aβ1-42 Oligomers. J Phys Chem B 2021; 125:2299-2307. [PMID: 33646777 DOI: 10.1021/acs.jpcb.1c00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small amyloid-β (Aβ) oligomers are believed to be key pathogenic species in Alzheimer's disease (AD). One suggested toxicity mechanism is the detergent model where oligomers remove lipid molecules from the bilayer. Senile plaques of AD patients also accumulate a 1:1 ratio of cholesterol/Aβ. What are the dominant structures of small Aβ42 oligomers with cholesterol molecules in aqueous solution? Here, we answer this question by performing atomistic replica exchange molecular dynamics simulations of Aβ42 dimers and trimers. Our simulations demonstrate that the interactions with cholesterol molecules change completely the energy landscape of small Aβ42 oligomers. This result shows that simulations in the bulk solution cannot recapitulate aggregation in the brain extracellular space.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75000 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75000 Paris, France.,Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
20
|
Yamauchi M, Okumura H. Dimerization of α-Synuclein Fragments Studied by Isothermal-Isobaric Replica-Permutation Molecular Dynamics Simulation. J Chem Inf Model 2021; 61:1307-1321. [PMID: 33625841 DOI: 10.1021/acs.jcim.0c01056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregates and fibrils of intrinsically disordered α-synuclein are associated with Parkinson's disease. Within a non-amyloid β component (NAC) spanning from the 61st to the 95th residue of α-synuclein, an 11-residue segment called NACore (68GAVVTGVTAVA78) is an essential region for both fibril formation and cytotoxicity. Although NACore peptides alone are known to form aggregates and amyloid fibrils, the mechanisms of aggregation and fibrillation remain unknown. This study investigated the dimerization process of NACore peptides as the initial stage of the aggregation and fibrillation processes. We performed an isothermal-isobaric replica-permutation molecular dynamics simulation, which is one of the efficient sampling methods, for the two NACore peptides in explicit water over 96 μs. The simulation succeeded in sampling a variety of dimer structures. An analysis of secondary structure revealed that most of the NACore dimers form intermolecular β-bridges. In particular, more antiparallel β-bridges were observed than parallel β-bridges. We also found that intramolecular secondary structures such as α-helix and antiparallel β-bridge are stabilized in the pre-dimer state. However, we identified that the intermolecular β-bridges tend to form directly between residues with no specific structure rather than via the intramolecular β-bridges. This is because the NACore peptides still have a low propensity to form the intramolecular secondary structures even though they are stabilized in the pre-dimer state.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
21
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Makshakova ON, Bogdanova LR, Faizullin DA, Ermakova EA, Zuev YF, Sedov IA. Interaction-induced structural transformation of lysozyme and kappa-carrageenan in binary complexes. Carbohydr Polym 2021; 252:117181. [PMID: 33183628 DOI: 10.1016/j.carbpol.2020.117181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The interactions between κ-carrageenan and hen egg-white lysozyme have been studied. In dilute solutions, the insoluble complexes with constant κ-carrageenan/lysozyme ratio of 0.3, or 12 disaccharide units per mole of protein are formed. FTIR-spectroscopy revealed that κ-carrageenan retains its unordered conformation and induces the rise of β-structure in lysozyme. In the complexes formed in concentrated mixtures, κ-carrageenan adopts helical conformation and lysozyme retains its native-like structure. These complexes contain 21 disaccharide units per mole of protein. Molecular modeling showed that flexible coil and rigid double helix of κ-carrageenan have different binding patterns to lysozyme surface. The latter has a strong preference to positively charged spots in lysozyme α-domain while the former also interacts to protein β-domain and stabilizes short-living β-structures. The obtained results confirm the preference of unordered κ-carrageenan to β-structure rich protein regions, which can be further used in the development of carrageenan-based protection of amyloid-like aggregation of proteins.
Collapse
Affiliation(s)
- O N Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| | - L R Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - D A Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia
| | - E A Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia
| | - I A Sedov
- Chemical Institute, Kazan Federal University, 18 Kremlevskaya Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| |
Collapse
|
23
|
Noda K, Tachi Y, Okamoto Y. Structural Characteristics of Monomeric Aβ42 on Fibril in the Early Stage of Secondary Nucleation Process. ACS Chem Neurosci 2020; 11:2989-2998. [PMID: 32794732 DOI: 10.1021/acschemneuro.0c00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) aggregates are believed to be one of the main causes of Alzheimer's disease. Aβ peptides form fibrils having cross β-sheet structures mainly through primary nucleation, secondary nucleation, and elongation. In particular, self-catalyzed secondary nucleation is of great interest. Here, we investigate the adsorption of Aβ42 peptides to the Aβ42 fibril to reveal a role of adsorption as a part of secondary nucleation. We performed extensive molecular dynamics simulations based on replica exchange with solute tempering 2 (REST2) to two systems: a monomeric Aβ42 in solution and a complex of an Aβ42 peptide and Aβ42 fibril. Results of our simulations show that the Aβ42 monomer is extended on the fibril. Furthermore, we find that the hairpin structure of the Aβ42 monomer decreases but the helix structure increases by adsorption to the fibril surface. These structural changes are preferable for forming fibril-like aggregates, suggesting that the fibril surface serves as a catalyst in the secondary nucleation process. In addition, the stabilization of the helix structure of the Aβ42 monomer on the fibril indicates that the strategy of a secondary nucleation inhibitor design for Aβ40 can also be used for Aβ42.
Collapse
Affiliation(s)
- Kohei Noda
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuhei Tachi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
24
|
Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264:106421. [PMID: 32623047 DOI: 10.1016/j.bpc.2020.106421] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) play many biological roles in the human proteome ranging from vesicular transport, signal transduction to neurodegenerative diseases. The Aβ and tau proteins, and the α-synuclein protein, key players in Alzheimer's and Parkinson's diseases, respectively are fully disordered at the monomer level. The structural heterogeneity of the monomeric and oligomeric states and the high self-assembly propensity of these three IDPs have precluded experimental structural determination. Simulations have been used to determine the atomic structures of these IDPs. In this article, we review recent computer models to capture the equilibrium ensemble of Aβ, tau and α-synuclein proteins at different association steps in aqueous solution and present new results of the PEP-FOLD framework on α-synuclein monomer.
Collapse
|
25
|
Derreumaux P, Man VH, Wang J, Nguyen PH. Tau R3-R4 Domain Dimer of the Wild Type and Phosphorylated Ser356 Sequences. I. In Solution by Atomistic Simulations. J Phys Chem B 2020; 124:2975-2983. [PMID: 32216358 DOI: 10.1021/acs.jpcb.0c00574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In Alzheimer's disease, neurofibrillary lesions correlate with cognitive deficits and consist of inclusions of tau protein with cross-β structure. A stable dimeric form of soluble tau has been evidenced in the cells, but its high-resolution structure is missing in solution. We know, however, that cryo-electron microscopy (c-EM) of full-length tau in the brain of an individual with AD displays a core of eight β-sheets with a C-shaped architecture spanning the R3-R4 repeat domain, while the rest of the protein is very flexible. To address the conformational ensemble of the dimer, we performed atomistic replica exchange molecular dynamics simulations on the tau R3-R4 domain starting from the c-EM configuration. We find that the wild type tau R3-R4 dimer explores elongated, U-shaped, V-shaped, and globular forms rather than the C-shape. Phosphorylation of Ser356, pSer356, is known to block the interaction between the tau protein and the amyloid-β42 peptide. Standard molecular dynamics simulations of this phosphorylated sequence for a total of 5 μs compared to its wild type counterpart show a modulation of the population of β-helices and accessible topologies and a decrease of intermediates near the fibril-like conformers.
Collapse
Affiliation(s)
- Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, 33000, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75000, Paris, France
| |
Collapse
|
26
|
Minh Hung H, Nguyen MT, Tran PT, Truong VK, Chapman J, Quynh Anh LH, Derreumaux P, Vu VV, Ngo ST. Impact of the Astaxanthin, Betanin, and EGCG Compounds on Small Oligomers of Amyloid Aβ 40 Peptide. J Chem Inf Model 2020; 60:1399-1408. [PMID: 32105466 DOI: 10.1021/acs.jcim.9b01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is experimental evidence that the astaxanthin, betanin, and epigallocatechin-3-gallate (EGCG) compounds slow down the aggregation kinetics and the toxicity of the amyloid-β (Aβ) peptide. How these inhibitors affect the self-assembly at the atomic level remains elusive. To address this issue, we have performed for each ligand atomistic replica exchange molecular dynamic (REMD) simulations in an explicit solvent of the Aβ11-40 trimer from the U-shape conformation and MD simulations starting from Aβ1-40 dimer and tetramer structures characterized by different intra- and interpeptide conformations. We find that the three ligands have similar binding free energies on small Aβ40 oligomers but very distinct transient binding sites that will affect the aggregation of larger assemblies and fibril elongation of the Aβ40 peptide.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| | - Vi Khanh Truong
- School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - James Chapman
- School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Le Huu Quynh Anh
- Department of Climate Change and Renewable Energy, Ho Chi Minh City University of Natural Resources and Environment, Ho Chi Minh City 700000, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
27
|
Ngo ST, Nguyen PH, Derreumaux P. Stability of Aβ11-40 Trimers with Parallel and Antiparallel β-Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. J Phys Chem B 2020; 124:617-626. [PMID: 31931566 DOI: 10.1021/acs.jpcb.9b10982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of the amyloid (Aβ) peptide of 39-43 amino acids into plaques is observed in the brain of Alzheimer's disease (AD) patients, but the mechanisms underlying the neurotoxicity of Aβ oligomers are still elusive. One suggested initial mechanism is related to the implications of amyloid membrane interactions, but characterization of these assemblies is challenging by experimental means. In this study, we have explored the stability of a trimer of Aβ11-40 in parallel and antiparallel β-sheet structures for the wild-type sequence and its F20W mutant in a dipalmitoylphosphatidylcholine membrane using atomistic replica exchange molecular dynamic simulations. We show that both the U-shape organization and the assembly of β-hairpins are maintained in the membrane and are resistant to the mutation F20W. In contrast the models are destabilized by the F19P mutation. Overall, our results indicate that these two assemblies represent minimal seeds or nuclei for the formation of either amyloid fibrils, a variety of β-barrel pores, or various aggregates for many Aβ sequences in a membrane-mimicking environment.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique , UPR 9080, CNRS, Université de Paris , 13 rue Pierre et Marie Curie , 75005 , Paris , France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University , 75005 Paris , France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
28
|
Nguyen PH, Sterpone F, Derreumaux P. Aggregation of disease-related peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:435-460. [PMID: 32145950 DOI: 10.1016/bs.pmbts.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein misfolding and aggregation of amyloid proteins is the fundamental cause of more than 20 diseases. Molecular mechanisms of the self-assembly and the formation of the toxic aggregates are still elusive. Computer simulations have been intensively used to study the aggregation of amyloid peptides of various amino acid lengths related to neurodegenerative diseases. We review atomistic and coarse-grained simulations of short amyloid peptides aimed at determining their transient oligomeric structures and the early and late aggregation steps.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
29
|
Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:461-504. [DOI: 10.1016/bs.pmbts.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Liu H, Zhong H, Xu Z, Zhang Q, Shah SJA, Liu H, Yao X. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Phys Chem Chem Phys 2020; 22:10968-10980. [DOI: 10.1039/c9cp06954b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
All-atom molecular dynamics (MD) simulation combined with Markov state model (MSM) were used to uncover the structural characteristics and misfolding mechanism of the key R3 fragment of tau protein at the atomic level.
Collapse
Affiliation(s)
- Hongli Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Zerong Xu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | | | | | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Quality Research in Chinese Medicine
| |
Collapse
|
31
|
Zhou H, Yang Z, Tian X, Chen L, Lee S, Huynh T, Ge C, Zhou R. Lanosterol Disrupts the Aggregation of Amyloid-β Peptides. ACS Chem Neurosci 2019; 10:4051-4060. [PMID: 31369236 DOI: 10.1021/acschemneuro.9b00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lanosterol, an amphipathic molecule, was discovered only very recently to effectively hinder the aggregation of lens proteins and dissolve the extremely stable fibrillar aggregates in cataracts. Here, we combined computational and experimental approaches to study how lanosterol disrupts the aggregation of another important peptide, amyloid-β (Aβ) peptide, associated with the Alzheimer's Disease (AD). Molecular dynamics simulations using the core amyloidogenic segment (KLVFFA) of Aβ peptide revealed that lanosterol exhibits at least two types of inhibition mechanism on the self-assembly of Aβ peptides. First, lanosterol entangles with peptides and forms a hydrophobic core with residues Phe-19 and Phe-20 in particular. Second, it interferes with the steric zipper interaction at the β-sheet-β-sheet interface. These simulation data suggest that lanosterol induces the unfolding of the Aβ peptide and the separation of the β-sheet layers. This predicted inhibition effect of lanosterol was then confirmed by an in vitro ThT fluorescence assay and AFM imaging. The cell toxicity assay also showed that the treatment of lanosterol indeed mitigates the cytotoxicity of the Aβ peptide in PC-12 cells. Moreover, lanosterol shows a stronger suppression effect on Aβ peptides' aggregation than cholesterol because of its higher hydrophobicity. This result establishes a foundation for the development of lanosterol-based potential therapies for AD and other protein conformational diseases.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Xin Tian
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Lei Chen
- East District of Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, China
| | - Sangyun Lee
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Tien Huynh
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Cuicui Ge
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
32
|
Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS. Structure and Physicochemical Properties of the Aβ42 Tetramer: Multiscale Molecular Dynamics Simulations. J Phys Chem B 2019; 123:7253-7269. [DOI: 10.1021/acs.jpcb.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Nguyen Minh Hai
- Faculty of Physics and Engineering Physics, University of Science-VNU HCM, Ho Chi Minh City 700000, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
33
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Nguyen PH, Campanera JM, Ngo ST, Loquet A, Derreumaux P. Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. J Phys Chem B 2019; 123:6750-6756. [DOI: 10.1021/acs.jpcb.9b05288] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Josep M. Campanera
- Departament de Fisicoquímica, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248 CNRS, Université de Bordeaux, Bordeaux, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
35
|
Liu C, Zhao W, Xing X, Shi H, Kang B, Liu H, Li P, Ai H. An Original Monomer Sampling from a Ready‐Made Aβ
42
NMR Fibril Suggests a Turn‐β‐Strand Synergetic Seeding Mechanism. Chemphyschem 2019; 20:1649-1660. [DOI: 10.1002/cphc.201801137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Chengqiang Liu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei Zhao
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xiaofeng Xing
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Hu Shi
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Baotao Kang
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Haiying Liu
- School of PhysicsUniversity of Jinan Jinan 250022 China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Hongqi Ai
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
36
|
Xiong Q, Jiang Y, Cai X, Yang F, Li Z, Han W. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations. ACS NANO 2019; 13:4455-4468. [PMID: 30869864 DOI: 10.1021/acsnano.8b09741] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The molecular design of peptide-assembled nanostructures relies on extensive knowledge pertaining to the relationship between conformational features of peptide constituents and their behavior regarding self-assembly, and characterizing the conformational details of peptides during their self-assembly is experimentally challenging. Here, we demonstrate that a hybrid-resolution modeling method can be employed to investigate the role that conformation plays during the assembly of terminally capped diphenylalanines (FF) through microsecond simulations of hundreds or thousands of peptides. Our simulations discovered tubular or vesicular nanostructures that were consistent with experimental observation while reproducing critical self-assembly concentration and secondary structure contents in the assemblies that were measured in our experiments. The atomic details provided by our method allowed us to uncover diverse FF conformations and conformation dependence of assembled nanostructures. We found that the assembled morphologies and the molecular packing of FFs in the observed assemblies are linked closely with side-chain angle and peptide bond orientation, respectively. Of various conformations accessible to soluble FFs, only a select few are compatible with the assembled morphologies in water. A conformation resembling a FF crystal, in particular, became predominant due to its ability to permit highly ordered and energetically favorable FF packing in aqueous assemblies. Strikingly, several conformations incompatible with the assemblies arose transiently as intermediates, facilitating key steps of the assembly process. The molecular rationale behind the role of these intermediate conformations were further explained. Collectively, the structural details reported here advance the understanding of the FF self-assembly mechanism, and our method shows promise for studying peptide-assembled nanostructures and their rational design.
Collapse
Affiliation(s)
- Qinsi Xiong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Xiang Cai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
37
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
38
|
Sengupta U, Carballo-Pacheco M, Strodel B. Automated Markov state models for molecular dynamics simulations of aggregation and self-assembly. J Chem Phys 2019; 150:115101. [DOI: 10.1063/1.5083915] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ushnish Sengupta
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- AICES Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Zhao X, Liao C, Ma YT, Ferrell JB, Schneebeli ST, Li J. Top-down Multiscale Approach To Simulate Peptide Self-Assembly from Monomers. J Chem Theory Comput 2019; 15:1514-1522. [PMID: 30677300 DOI: 10.1021/acs.jctc.8b01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling peptide assembly from monomers on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we present a new approach which integrates coarse-grained (CG), mixed-resolution, and all-atom (AA) modeling in a single simulation. We simulate the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the mixed-resolution and AA models. We have implemented this top-down approach with new tools to automate model transformations and to monitor oligomer formations. Further, a theory was developed to estimate the optimal simulation length for each stage using a model peptide, melittin. The assembly level, the oligomer distribution, and the secondary structures of melittin simulated by the optimal protocol show good agreement with prior experiments and AA simulations. Finally, our approach and theory have been successfully validated with three amyloid peptides (β-amyloid 16-22, GNNQQNY fragment from the yeast prion protein SUP35, and α-synuclein fibril 35-55), which highlight the synergy from modeling at multiple resolutions. This work not only serves as proof of concept for multiresolution simulation studies but also presents practical guidelines for further self-assembly simulations at more physically and chemically relevant scales.
Collapse
Affiliation(s)
- Xiaochuan Zhao
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Chenyi Liao
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Yong-Tao Ma
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Jonathon B Ferrell
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Severin T Schneebeli
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Jianing Li
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| |
Collapse
|
40
|
Peng JH, Wang W, Yu YQ, Gu HL, Huang X. Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun-hui Peng
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei Wang
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ye-qing Yu
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Han-lin Gu
- Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xuhui Huang
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
41
|
Liao Q, Owen MC, Bali S, Barz B, Strodel B. Aβ under stress: the effects of acidosis, Cu 2+-binding, and oxidation on amyloid β-peptide dimers. Chem Commun (Camb) 2018; 54:7766-7769. [PMID: 29947363 DOI: 10.1039/c8cc02263a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In light of the high affinity of Cu2+ for Alzheimer's Aβ1-42 and its ability to subsequently catalyze the formation of radicals, we examine the effects of Cu2+ binding, Aβ oxidation, and an acidic environment on the conformational dynamics of the smallest Aβ1-42 oligomer, the Aβ1-42 dimer. Transition networks calculated from Hamiltonian replica exchange molecular dynamics (H-REMD) simulations reveal that the decreased pH considerably increased the β-sheet content, whereas Cu2+ binding increased the exposed hydrophobic surface area, both of which can contribute to an increased oligomerization propensity and toxicity.
Collapse
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
42
|
Jiang X, Cao Y, Han W. In Silico Study of Recognition between Aβ 40 and Aβ 40 Fibril Surfaces: An N-Terminal Helical Recognition Motif and Its Implications for Inhibitor Design. ACS Chem Neurosci 2018; 9:935-944. [PMID: 29281261 DOI: 10.1021/acschemneuro.7b00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent finding that the surface of amyloid-β (Aβ) fibril can recruit Aβ peptides and convert them into toxic oligomers has rendered fibril surfaces attractive as inhibition targets. Through extensive simulations with hybrid-resolution and all-atom models, we have investigated how Aβ1-40 recognizes its own fibril surfaces. These calculations give a ∼2.6-5.6 μM half-saturation concentration of Aβ on the surface (cf. experimental value ∼6 μM). Aβ was found to preferentially bind to region 16-24 of Aβ40 fibrils through both electrostatic and van der Waals forces. Both terminal regions of Aβ contribute significantly to binding energetics. A helical binding pose of the N-terminal region of Aβ (Aβ3-14) not seen before is highly preferred on the fibril surface. Aβ3-14 in a helical form can arrange side chains with similar properties on the same sides of the helix and maximize complementary interactions with side chain arrays characteristic of amyloid fibrils. Helix formation on a fibril surface implies a helix-mediated mechanism for Aβ oligomerization catalyzed by fibrils. We propose an Aβ3-14 analogue that can exhibit enhanced helical character and interactions with Aβ fibrils and may thus be used as a template with which to pursue potent inhibitors of Aβ-fibril interactions.
Collapse
Affiliation(s)
- Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
43
|
Zeng X, Li ZW, Zheng X, Zhu L, Sun ZY, Lu ZY, Huang X. Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways. Phys Chem Chem Phys 2018; 20:10030-10037. [PMID: 29620122 DOI: 10.1039/c8cp00522b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hollow polyhedral cages hold great potential for application in nanotechnological and biomedical fields. Understanding the formation mechanism of these self-assembled structures could provide guidance for the rational design of the desired polyhedral cages. Here, by constructing kinetic network models from extensive coarse-grained molecular dynamics simulations, we elucidated the formation mechanism of the dodecahedral cage, which is formed by the self-assembly of patchy particles. We found that the dodecahedral cage is formed through increasing the aggregate size followed by structure rearrangement. Based on this mechanistic understanding, we improved the productivity of the dodecahedral cage through the rational design of the patch arrangement of patchy particles, which promotes the structural rearrangement process. Our results demonstrate that it should be a feasible strategy to achieve the rational design of the desired nanostructures via the kinetic analysis. We anticipate that this methodology could be extended to other self-assembly systems for the fabrication of functional nanomaterials.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer. J Chem Phys 2018; 148:045105. [DOI: 10.1063/1.5018459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|