1
|
Türtscher PL, Reiher M. Automated Microsolvation for Minimum Energy Path Construction in Solution. J Chem Theory Comput 2025. [PMID: 40434740 DOI: 10.1021/acs.jctc.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Describing chemical reactions in solution on a molecular level is a challenging task due to the high mobility of weakly interacting solvent molecules which requires configurational sampling. For instance, polar and protic solvents can interact strongly with solutes and may interfere in reactions. To define and identify representative arrangements of solvent molecules modulating a transition state is a nontrivial task. Here, we propose to monitor their active participation in the decaying normal mode at a transition state, which defines active solvent molecules. Moreover, it is desirable to prepare a low-dimensional microsolvation model in a well-defined, fully automated, high-throughput, and easy-to-deploy fashion, which we propose to derive in a stepwise protocol. First, transition state structures are optimized in a sufficiently solvated quantum-classical hybrid model, which are subjected to a redefinition of a then reduced quantum region. From the reduced model, minimally microsolvated structures are extracted that contain only active solvent molecules. Modeling the remaining solvation effects is deferred to a continuum model. To establish an easy-to-use free-energy model, we combine the standard thermochemical gas-phase model with a correction for the cavity entropy in solution. We assess our microsolvation and free-energy models for methanediol formation from formaldehyde; for the hydration of carbon dioxide (which we consider in a solvent mixture to demonstrate the versatility of our approach); and, finally, for the chlorination of phenol with hypochlorous acid.
Collapse
Affiliation(s)
- Paul L Türtscher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Lee K, Lee J, Park S, Kim WY. Facilitating Transition State Search with Minimal Conformational Sampling Using Reaction Graph. J Chem Theory Comput 2025; 21:2487-2500. [PMID: 39998320 DOI: 10.1021/acs.jctc.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Elucidating transition states (TSs) is crucial for understanding chemical reactions. The reliability of traditional TS search approaches depends on input conformations that require significant effort to prepare. Previous automated methods for generating input reaction conformations typically involve extensive exploration of a large conformational space. Such exhaustive search can be complicated by the rapid growth of the conformational space, especially for reactions involving many rotatable bonds, multiple reacting molecules, and numerous bond formations and dissociations. To address this problem, we propose a new approach that generates reaction conformations for TS searches with minimal reliance on sampling. This method constructs a pseudo-TS structure based on a reaction graph containing bond formation and dissociation information and modifies it to produce reactant and product conformations. Tested on three different benchmarks, our method consistently generated suitable conformations without necessitating extensive sampling, demonstrating its potential to significantly improve the applicability of automated TS searches. This approach offers a valuable tool for a broad range of applications such as reaction mechanism analysis and network exploration.
Collapse
Affiliation(s)
- Kyunghoon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinwon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Shinyoung Park
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Hashidzume A. The second wave of formose research. BBA ADVANCES 2025; 7:100141. [PMID: 39974666 PMCID: PMC11835704 DOI: 10.1016/j.bbadva.2025.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
This review article highlights key developments in the second wave of formose research (from approximately 2000), summarizing approximately 100 relevant studies. Section 1 introduces the basics of formose reaction and its historical context. Section 2 provides a brief overview of the pioneering works from the first wave of formose research (from 1970 to 1990). Section 3 then overviews the second wave of formose research, in which formose reactions under various conditions, mechanistic studies of the formose reaction, formose reactions and the origin of life, and applications of formose reactions are described. Finally, Section 4 offers summary and outlook.
Collapse
Affiliation(s)
- Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Meissner JA, Meisner J. Acceleration of Diffusion in Ab Initio Nanoreactor Molecular Dynamics and Application to Hydrogen Sulfide Oxidation. J Chem Theory Comput 2025; 21:218-229. [PMID: 39440718 DOI: 10.1021/acs.jctc.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The computational description of chemical reactivity can become extremely complex when multiple different reaction products and intermediates come into play, forming a chemical reaction network. Therefore, computational methods for the automated construction of chemical reaction networks have been developed in the last decades. One of these methods, ab initio nanoreactor molecular dynamics (NMD), is based on external forces enhancing reactivity by e.g., periodically compressing the system and allowing it to relax. However, during the relaxation process, a significant simulation time is required to allow energy to dissipate and molecules to diffuse, making this part of the NMD simulation computationally intensive. This work aims to improve NMD by accelerating the diffusion process in the relaxation phase. We systematically investigate the speedup of reaction discovery gained by diffusion acceleration, leading to a factor of up to 28 in discovery frequency. Diffusion-accelerated nanoreactor molecular dynamics (DA-NMD) is then used to construct a reaction network of hydrogen sulfide oxidation under atmospheric conditions, where reactions are automatically detected by a change in the bond order and bond distance. A reaction network of 108 molecular species and 399 elementary reactions was constructed starting from hydrogen sulfide, hydroxy radicals, and molecular oxygen covering a broad variety of sulfur-oxygen chemistry and oxidation states of the sulfur atom ranging from -II to +VI.
Collapse
Affiliation(s)
- Jan A Meissner
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Dusseldorf 40225, Germany
| | - Jan Meisner
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Dusseldorf 40225, Germany
| |
Collapse
|
5
|
Kua J, Peña MT, Cotter SN, Leca J. Sulfur Analogs of the Core Formose Cycle: A Free Energy Map. Life (Basel) 2024; 15:1. [PMID: 39859941 PMCID: PMC11766735 DOI: 10.3390/life15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Using computational methods, we examine if the presence of H2S can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C2 species, and feeding the cycle with CH2O, selected aldol additions and enolizations are kinetically more favorable. Thione formation is thermodynamically less favored compared to aldehydes and ketones, but all these species can be connected by enolization reactions. In some sulfur analogs, the retroaldol transformation of a C4 species back into linchpin species is thermodynamically favorable, and we have found one route incorporating where incorporating sulfur selects for a specific pathway over others. However, as CH2O diminishes, the aldol addition of larger species is less favorable for the sulfur analogs. Our results also suggest that competing Cannizzaro side reactions are kinetically less favored and thermodynamically disfavored when H2S is abundant.
Collapse
Affiliation(s)
- Jeremy Kua
- Department of Chemistry & Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | | | | | | |
Collapse
|
6
|
Stuyver T. TS-tools: Rapid and automated localization of transition states based on a textual reaction SMILES input. J Comput Chem 2024; 45:2308-2317. [PMID: 38850166 DOI: 10.1002/jcc.27374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/10/2024]
Abstract
Here, TS-tools is presented, a Python package facilitating the automated localization of transition states (TS) based on a textual reaction SMILES input. TS searches can either be performed at xTB or DFT level of theory, with the former yielding guesses at marginal computational cost, and the latter directly yielding accurate structures at greater expense. On a benchmarking dataset of mono- and bimolecular reactions, TS-tools reaches an excellent success rate of 95% already at xTB level of theory. For tri- and multimolecular reaction pathways - which are typically not benchmarked when developing new automated TS search approaches, yet are relevant for various types of reactivity, cf. solvent- and autocatalysis and enzymatic reactivity - TS-tools retains its ability to identify TS geometries, though a DFT treatment becomes essential in many cases. Throughout the presented applications, a particular emphasis is placed on solvation-induced mechanistic changes, another issue that received limited attention in the automated TS search literature so far.
Collapse
Affiliation(s)
- Thijs Stuyver
- Ecole Nationale Supérieure de Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France
| |
Collapse
|
7
|
Kua J, Tripoli LP. Exploring the Core Formose Cycle: Catalysis and Competition. Life (Basel) 2024; 14:933. [PMID: 39202675 PMCID: PMC11355428 DOI: 10.3390/life14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The core autocatalytic cycle of the formose reaction may be enhanced or eroded by the presence of simple molecules at life's origin. Utilizing quantum chemistry, we calculate the thermodynamics and kinetics of reactions both within the core cycle and those that deplete the reactants and intermediates, such as the Cannizzaro reaction. We find that via disproportionation of aldehydes into carboxylic acids and alcohols, the Cannizzaro reaction furnishes simple catalysts for a variety of reactions. We also find that ammonia can catalyze both in-cycle and Cannizzaro reactions while hydrogen sulfide does not; both, however, play a role in sequestering reactants and intermediates in the web of potential reactions.
Collapse
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | | |
Collapse
|
8
|
Csizi KS, Steiner M, Reiher M. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nat Commun 2024; 15:5320. [PMID: 38909029 PMCID: PMC11193806 DOI: 10.1038/s41467-024-49594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
Nanoscopic systems exhibit diverse molecular substructures by which they facilitate specific functions. Theoretical models of them, which aim at describing, understanding, and predicting these capabilities, are difficult to build. Viable quantum-classical hybrid models come with specific challenges regarding atomistic structure construction and quantum region selection. Moreover, if their dynamics are mapped onto a state-to-state mechanism such as a chemical reaction network, its exhaustive exploration will be impossible due to the combinatorial explosion of the reaction space. Here, we introduce a "quantum magnifying glass" that allows one to interactively manipulate nanoscale structures at the quantum level. The quantum magnifying glass seamlessly combines autonomous model parametrization, ultra-fast quantum mechanical calculations, and automated reaction exploration. It represents an approach to investigate complex reaction sequences in a physically consistent manner with unprecedented effortlessness in real time. We demonstrate these features for reactions in bio-macromolecules and metal-organic frameworks, diverse systems that highlight general applicability.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
9
|
Weymuth T, Unsleber JP, Türtscher PL, Steiner M, Sobez JG, Müller CH, Mörchen M, Klasovita V, Grimmel SA, Eckhoff M, Csizi KS, Bosia F, Bensberg M, Reiher M. SCINE-Software for chemical interaction networks. J Chem Phys 2024; 160:222501. [PMID: 38857173 DOI: 10.1063/5.0206974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.
Collapse
Affiliation(s)
- Thomas Weymuth
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P Unsleber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L Türtscher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan-Grimo Sobez
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Charlotte H Müller
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Veronika Klasovita
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A Grimmel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Eckhoff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Francesco Bosia
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Srinivasan K, Puliyanda A, Prasad V. Identification of Reaction Network Hypotheses for Complex Feedstocks from Spectroscopic Measurements with Minimal Human Intervention. J Phys Chem A 2024; 128:4714-4729. [PMID: 38836378 DOI: 10.1021/acs.jpca.4c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this work, we detail an automated reaction network hypothesis generation protocol for processes involving complex feedstocks where information about the species and reactions involved is unknown. Our methodology is process agnostic and can be utilized in any reactive process with spectroscopic measurements that provide information on the evolution of the components in the mixture. We decompose the mixture spectra to obtain spectroscopic signatures of the individual components and use a 1-D convolutional neural network to automatically identify functional groups indicated by them. We employ atom-atom mapping to automatically recover reaction rules that are applied on candidate molecules identified from chemistry databases through fingerprint similarity. The method is tested on synthetic data and on spectroscopic measurements of lab-scale batch hydrothermal liquefaction (HTL) of biomass to determine the accuracy of prediction across datasets of varying complexities. Our methodology is able to identify reaction network hypotheses containing reaction networks close to the ground truth in the case of synthetic data, and we are also able to recover candidate molecules and reaction networks close to the ones reported in the previous literature studies for biomass pyrolysis.
Collapse
Affiliation(s)
- Karthik Srinivasan
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211, 116st NW, Edmonton T6G 1H9, AB, Canada
| | - Anjana Puliyanda
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211, 116st NW, Edmonton T6G 1H9, AB, Canada
| | - Vinay Prasad
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211, 116st NW, Edmonton T6G 1H9, AB, Canada
| |
Collapse
|
11
|
Steiner M, Reiher M. A human-machine interface for automatic exploration of chemical reaction networks. Nat Commun 2024; 15:3680. [PMID: 38693117 PMCID: PMC11063077 DOI: 10.1038/s41467-024-47997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Autonomous reaction network exploration algorithms offer a systematic approach to explore mechanisms of complex chemical processes. However, the resulting reaction networks are so vast that an exploration of all potentially accessible intermediates is computationally too demanding. This renders brute-force explorations unfeasible, while explorations with completely pre-defined intermediates or hard-wired chemical constraints, such as element-specific coordination numbers, are not flexible enough for complex chemical systems. Here, we introduce a STEERING WHEEL to guide an otherwise unbiased automated exploration. The STEERING WHEEL algorithm is intuitive, generally applicable, and enables one to focus on specific regions of an emerging network. It also allows for guiding automated data generation in the context of mechanism exploration, catalyst design, and other chemical optimization challenges. The algorithm is demonstrated for reaction mechanism elucidation of transition metal catalysts. We highlight how to explore catalytic cycles in a systematic and reproducible way. The exploration objectives are fully adjustable, allowing one to harness the STEERING WHEEL for both structure-specific (accurate) calculations as well as for broad high-throughput screening of possible reaction intermediates.
Collapse
Affiliation(s)
- Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
12
|
Vadaddi SM, Zhao Q, Savoie BM. Graph to Activation Energy Models Easily Reach Irreducible Errors but Show Limited Transferability. J Phys Chem A 2024; 128:2543-2555. [PMID: 38517281 DOI: 10.1021/acs.jpca.3c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Activation energy characterization of competing reactions is a costly but crucial step for understanding the kinetic relevance of distinct reaction pathways, product yields, and myriad other properties of reacting systems. The standard methodology for activation energy characterization has historically been a transition state search using the highest level of theory that can be afforded. However, recently, several groups have popularized the idea of predicting activation energies directly based on nothing more than the reactant and product graphs, a sufficiently complex neural network, and a broad enough data set. Here, we have revisited this task using the recently developed Reaction Graph Depth 1 (RGD1) transition state data set and several newly developed graph attention architectures. All of these new architectures achieve similar state-of-the-art results of ∼4 kcal/mol mean absolute error on withheld testing sets of reactions but poor performance on external testing sets composed of reactions with differing mechanisms, reaction molecularity, or reactant size distribution. Limited transferability is also shown to be shared by other contemporary graph to activation energy architectures through a series of case studies. We conclude that an array of standard graph architectures can already achieve results comparable to the irreducible error of available reaction data sets but that out-of-distribution performance remains poor.
Collapse
Affiliation(s)
- Sai Mahit Vadaddi
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Qiyuan Zhao
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
13
|
Briš A, Baltussen MG, Tripodi GL, Huck WTS, Franceschi P, Roithová J. Direct Analysis of Complex Reaction Mixtures: Formose Reaction. Angew Chem Int Ed Engl 2024; 63:e202316621. [PMID: 38100204 DOI: 10.1002/anie.202316621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 12/31/2023]
Abstract
Complex reaction mixtures, like those postulated on early Earth, present an analytical challenge because of the number of components, their similarity, and vastly different concentrations. Interpreting the reaction networks is typically based on simplified or partial data, limiting our insight. We present a new approach based on online monitoring of reaction mixtures formed by the formose reaction by ion-mobility-separation mass-spectrometry. Monitoring the reaction mixtures led to large data sets that we analyzed by non-negative matrix factorization, thereby identifying ion-signal groups capturing the time evolution of the network. The groups comprised ≈300 major ion signals corresponding to sugar-calcium complexes formed during the formose reaction. Multivariate analysis of the kinetic profiles of these complexes provided an overview of the interconnected kinetic processes in the solution, highlighting different pathways for sugar growth and the effects of different initiators on the initial kinetics. Reconstructing the network's topology further, we revealed so far unnoticed fast retro-aldol reaction of ketoses, which significantly affects the initial reaction dynamics. We also detected the onset of sugar-backbone branching for C6 sugars and cyclization reactions starting for C5 sugars. This top-down analytical approach opens a new way to analyze complex dynamic mixtures online with unprecedented coverage and time resolution.
Collapse
Affiliation(s)
- Anamarija Briš
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
- Laboratory for physical-organic chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mathieu G Baltussen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Guilherme L Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Pietro Franceschi
- Research and innovation Centre, Fondazione E. Mach, Via Edmund Mach, 1, 38098, San Michele All'adige TN, Italy
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| |
Collapse
|
14
|
Kim S, Woo J, Kim WY. Diffusion-based generative AI for exploring transition states from 2D molecular graphs. Nat Commun 2024; 15:341. [PMID: 38184661 PMCID: PMC10771475 DOI: 10.1038/s41467-023-44629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
The exploration of transition state (TS) geometries is crucial for elucidating chemical reaction mechanisms and modeling their kinetics. Recently, machine learning (ML) models have shown remarkable performance for prediction of TS geometries. However, they require 3D conformations of reactants and products often with their appropriate orientations as input, which demands substantial efforts and computational cost. Here, we propose a generative approach based on the stochastic diffusion method, namely TSDiff, for prediction of TS geometries just from 2D molecular graphs. TSDiff outperforms the existing ML models with 3D geometries in terms of both accuracy and efficiency. Moreover, it enables to sample various TS conformations, because it learns the distribution of TS geometries for diverse reactions in training. Thus, TSDiff finds more favorable reaction pathways with lower barrier heights than those in the reference database. These results demonstrate that TSDiff shows promising potential for an efficient and reliable TS exploration.
Collapse
Affiliation(s)
- Seonghwan Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Jeheon Woo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea.
- AI Institute, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Zhang Y, Xu C, Lan Z. Automated Exploration of Reaction Networks and Mechanisms Based on Metadynamics Nanoreactor Simulations. J Chem Theory Comput 2023. [PMID: 38031422 DOI: 10.1021/acs.jctc.3c00752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We developed an automated approach to construct a complex reaction network and explore the reaction mechanisms for numerous reactant molecules by integrating several theoretical approaches. Nanoreactor-type molecular dynamics was used to generate possible chemical reactions, in which the metadynamics was used to overcome the reaction barriers, and the semiempirical GFN2-xTB method was used to reduce the computational cost. Reaction events were identified from trajectories using the hidden Markov model based on the evolution of the molecular connectivity. This provided the starting points for further transition-state searches at the electronic structure levels of density functional theory to obtain the reaction mechanism. Finally, the entire reaction network containing multiple pathways was built. The feasibility and efficiency of the automated construction of the reaction network were investigated using the HCHO and NH3 biomolecular reaction and the reaction network for a multispecies system comprising dozens of HCN and H2O molecules. The results indicated that the proposed approach provides a valuable and effective tool for the automated exploration of the reaction networks.
Collapse
Affiliation(s)
- Yutai Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
16
|
Petrus E, Garay-Ruiz D, Reiher M, Bo C. Multi-Time-Scale Simulation of Complex Reactive Mixtures: How Do Polyoxometalates Form? J Am Chem Soc 2023; 145:18920-18930. [PMID: 37496164 DOI: 10.1021/jacs.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the dynamics of reactive mixtures still challenges both experiments and theory. A relevant example can be found in the chemistry of molecular metal-oxide nanoclusters, also known as polyoxometalates. The high number of species potentially involved, the interconnectivity of the reaction network, and the precise control of the pH and concentrations needed in the synthesis of such species make the theoretical/computational treatment of such processes cumbersome. This work addresses this issue relying on a unique combination of recently developed computational methods that tackle the construction, kinetic simulation, and analysis of complex chemical reaction networks. By using the Bell-Evans-Polanyi approximation for estimating activation energies, and an accurate and robust linear scaling for correcting the computed pKa values, we report herein multi-time-scale kinetic simulations for the self-assembly processes of polyoxotungstates that comprise 22 orders of magnitude, from tens of femtoseconds to months of reaction time. This very large time span was required to reproduce very fast processes such as the acid/base equilibria (at 10-12 s), relatively slow reactions such as the formation of key clusters such as the metatungstate (at 103 s), and the very slow assembly of the decatungstate (at 106 s). Analysis of the kinetic data and of the reaction network topology shed light onto the details of the main reaction mechanisms, which explains the origin of kinetic and thermodynamic control followed by the reaction. Simulations at alkaline pH fully reproduce experimental evidence since clusters do not form under those conditions.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel•li Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
17
|
Xu R, Meisner J, Chang AM, Thompson KC, Martínez TJ. First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chem Sci 2023; 14:7447-7464. [PMID: 37449065 PMCID: PMC10337770 DOI: 10.1039/d3sc01202f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Our recent success in exploiting graphical processing units (GPUs) to accelerate quantum chemistry computations led to the development of the ab initio nanoreactor, a computational framework for automatic reaction discovery and kinetic model construction. In this work, we apply the ab initio nanoreactor to methane pyrolysis, from automatic reaction discovery to path refinement and kinetic modeling. Elementary reactions occurring during methane pyrolysis are revealed using GPU-accelerated ab initio molecular dynamics simulations. Subsequently, these reaction paths are refined at a higher level of theory with optimized reactant, product, and transition state geometries. Reaction rate coefficients are calculated by transition state theory based on the optimized reaction paths. The discovered reactions lead to a kinetic model with 53 species and 134 reactions, which is validated against experimental data and simulations using literature kinetic models. We highlight the advantage of leveraging local brute force and Monte Carlo sensitivity analysis approaches for efficient identification of important reactions. Both sensitivity approaches can further improve the accuracy of the methane pyrolysis kinetic model. The results in this work demonstrate the power of the ab initio nanoreactor framework for computationally affordable systematic reaction discovery and accurate kinetic modeling.
Collapse
Affiliation(s)
- Rui Xu
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Jan Meisner
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Alexander M Chang
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Keiran C Thompson
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
18
|
Toniato A, Unsleber JP, Vaucher AC, Weymuth T, Probst D, Laino T, Reiher M. Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning. DIGITAL DISCOVERY 2023; 2:663-673. [PMID: 37312681 PMCID: PMC10259370 DOI: 10.1039/d3dd00006k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/09/2023] [Indexed: 06/15/2023]
Abstract
Data-driven synthesis planning has seen remarkable successes in recent years by virtue of modern approaches of artificial intelligence that efficiently exploit vast databases with experimental data on chemical reactions. However, this success story is intimately connected to the availability of existing experimental data. It may well occur in retrosynthetic and synthesis design tasks that predictions in individual steps of a reaction cascade are affected by large uncertainties. In such cases, it will, in general, not be easily possible to provide missing data from autonomously conducted experiments on demand. However, first-principles calculations can, in principle, provide missing data to enhance the confidence of an individual prediction or for model retraining. Here, we demonstrate the feasibility of such an ansatz and examine resource requirements for conducting autonomous first-principles calculations on demand.
Collapse
Affiliation(s)
- Alessandra Toniato
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Jan P Unsleber
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Alain C Vaucher
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Thomas Weymuth
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Daniel Probst
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Teodoro Laino
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| |
Collapse
|
19
|
Suzuki K, Kanno M, Koseki S, Kono H. A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde. J Phys Chem A 2023; 127:4152-4165. [PMID: 37129441 DOI: 10.1021/acs.jpca.2c09088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the "pseudo-lattice points" at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm-1 with only 875 SBGs at the MP2/6-31G(d,p) level of theory, in good agreement with 25 cm-1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40-45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.
Collapse
Affiliation(s)
- Kazuma Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shiro Koseki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Zhao Q, Garimella SS, Savoie BM. Thermally Accessible Prebiotic Pathways for Forming Ribonucleic Acid and Protein Precursors from Aqueous Hydrogen Cyanide. J Am Chem Soc 2023; 145:6135-6143. [PMID: 36883252 DOI: 10.1021/jacs.2c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The search for prebiotic chemical pathways to biologically relevant molecules is a long-standing puzzle that has generated a menagerie of competing hypotheses with limited experimental prospects for falsification. However, the advent of computational network exploration methodologies has created the opportunity to compare the kinetic plausibility of various channels and even propose new pathways. Here, the space of organic molecules that can be formed within four polar or pericyclic reactions from water and hydrogen cyanide (HCN), two established prebiotic candidates for generating biological precursors, was comprehensively explored with a state-of-the-art exploration algorithm. A surprisingly diverse reactivity landscape was revealed within just a few steps of these simple molecules. Reaction pathways to several biologically relevant molecules were discovered involving lower activation energies and fewer reaction steps compared with recently proposed alternatives. Accounting for water-catalyzed reactions qualitatively affects the interpretation of the network kinetics. The case-study also highlights omissions of simpler and lower barrier reaction pathways to certain products by other algorithms that qualitatively affect the interpretation of HCN reactivity.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Sanjay S Garimella
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
21
|
Concentration‐Flux‐Steered Mechanism Exploration with an Organocatalysis Application. Isr J Chem 2023. [DOI: 10.1002/ijch.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
22
|
Unsleber JP, Liu H, Talirz L, Weymuth T, Mörchen M, Grofe A, Wecker D, Stein CJ, Panyala A, Peng B, Kowalski K, Troyer M, Reiher M. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation. J Chem Phys 2023; 158:084803. [PMID: 36859110 DOI: 10.1063/5.0136526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.
Collapse
Affiliation(s)
- Jan P Unsleber
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Hongbin Liu
- Microsoft Quantum, Redmond, Washington 98052, USA
| | | | - Thomas Weymuth
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adam Grofe
- Microsoft Quantum, Redmond, Washington 98052, USA
| | - Dave Wecker
- Microsoft Quantum, Redmond, Washington 98052, USA
| | - Christopher J Stein
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Ajay Panyala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Bo Peng
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Karol Kowalski
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | | | - Markus Reiher
- Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
23
|
Mardyukov A, Wende RC, Schreiner PR. Matrix isolation and photorearrangement of cis- and trans-1,2-ethenediol to glycolaldehyde. Chem Commun (Camb) 2023; 59:2596-2599. [PMID: 36753323 DOI: 10.1039/d2cc06331j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Ethenediols are deemed key intermediates in prebiotic and interstellar syntheses of carbohydrates. Here we present the gas-phase synthesis of these enediols, the high-energy tautomers of glycolaldehyde, trapped in cryogenic argon matrices. Importantly, upon photolysis at λ = 180-254 nm, the enols rearrange to the simplest sugar glycolaldehyde.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| |
Collapse
|
24
|
Türtscher PL, Reiher M. Pathfinder─Navigating and Analyzing Chemical Reaction Networks with an Efficient Graph-Based Approach. J Chem Inf Model 2023; 63:147-160. [PMID: 36515968 PMCID: PMC9832502 DOI: 10.1021/acs.jcim.2c01136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/15/2022]
Abstract
While the field of first-principles explorations into chemical reaction space has been continuously growing, the development of strategies for analyzing resulting chemical reaction networks (CRNs) is lagging behind. A CRN consists of compounds linked by reactions. Analyzing how these compounds are transformed into one another based on kinetic modeling is a nontrivial task. Here, we present the graph-optimization-driven algorithm and program Pathfinder to allow for such an analysis of a CRN. The CRN for this work has been obtained with our open-source Chemoton reaction network exploration software. Chemoton probes reactive combinations of compounds for elementary steps and sorts them into reactions. By encoding these reactions of the CRN as a graph consisting of compound and reaction vertices and adding information about activation barriers as well as required reagents to the edges of the graph yields a complete graph-theoretical representation of the CRN. Since the probabilities of the formation of compounds depend on the starting conditions, the consumption of any compound during a reaction must be accounted for to reflect the availability of reagents. To account for this, we introduce compound costs to reflect compound availability. Simultaneously, the determined compound costs rank the compounds in the CRN in terms of their probability to be formed. This ranking then allows us to probe easily accessible compounds in the CRN first for further explorations into yet unexplored terrain. We first illustrate the working principle on an abstract small CRN. Afterward, Pathfinder is demonstrated in the example of the disproportionation of iodine with water and the comproportionation of iodic acid and hydrogen iodide. Both processes are analyzed within the same CRN, which we construct with our autonomous first-principles CRN exploration software Chemoton [Unsleber, J. P.; J. Chem. Theory Comput. 2022, 18, 5393-5409] guided by Pathfinder.
Collapse
Affiliation(s)
- Paul L. Türtscher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Krep L, Schmalz F, Solbach F, Komissarov L, Nevolianis T, Kopp WA, Verstraelen T, Leonhard K. A Reactive Molecular Dynamics Study of Chlorinated Organic Compounds. Part II: A ChemTraYzer Study of Chlorinated Dibenzofuran Formation and Decomposition Processes. Chemphyschem 2022; 24:e202200783. [PMID: 36511423 DOI: 10.1002/cphc.202200783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
In our two-paper series, we first present the development of ReaxFF CHOCl parameters using the recently published ParAMS parametrization tool. In this second part, we update the reactive Molecular Dynamics - Quantum Mechanics coupling scheme ChemTraYzer and combine it with our new ReaxFF parameters from Part I to study formation and decomposition processes of chlorinated dibenzofurans. We introduce a self-learning method for recovering failed transition-state searches that improves the overall ChemTraYzer transition-state search success rate by 10 percentage points to a total of 48 %. With ChemTraYzer, we automatically find and quantify more than 500 reactions using transition state theory and DFT. Among the discovered chlorinated dibenzofuran reactions are numerous reactions that are new to the literature. In three case studies, we discuss the set of reactions that are most relevant to the dibenzofuran literature: (i) bimolecular reactions of the chlorinated-dibenzofuran precursors phenoxy radical and 1,3,5-trichlorobenzene, (ii) dibenzofuran chlorination and pyrolysis, and (iii) oxidation of chlorinated dibenzofurans.
Collapse
Affiliation(s)
- Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Florian Solbach
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Leonid Komissarov
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052, Ghent, Belgium
| | - Thomas Nevolianis
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052, Ghent, Belgium
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| |
Collapse
|
26
|
Hashemi A, Bougueroua S, Gaigeot MP, Pidko EA. ReNeGate: A Reaction Network Graph-Theoretical Tool for Automated Mechanistic Studies in Computational Homogeneous Catalysis. J Chem Theory Comput 2022; 18:7470-7482. [PMID: 36321652 DOI: 10.1021/acs.jctc.2c00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exploration of the chemical reaction space of chemical transformations in multicomponent mixtures is one of the main challenges in contemporary computational chemistry. To remove expert bias from mechanistic studies and to discover new chemistries, an automated graph-theoretical methodology is proposed, which puts forward a network formalism of homogeneous catalysis reactions and utilizes a network analysis tool for mechanistic studies. The method can be used for analyzing trajectories with single and multiple catalytic species and can provide unique conformers of catalysts including multinuclear catalyst clusters along with other catalytic mixture components. The presented three-step approach has the integrated ability to handle multicomponent catalytic systems of arbitrary complexity (mixtures of reactants, catalyst precursors, ligands, additives, and solvents). It is not limited to predefined chemical rules, does not require prealignment of reaction mixture components consistent with a reaction coordinate, and is not agnostic to the chemical nature of transformations. Conformer exploration, reactive event identification, and reaction network analysis are the main steps taken for identifying the pathways in catalytic systems given the starting precatalytic reaction mixture as the input. Such a methodology allows us to efficiently explore catalytic systems in realistic conditions for either previously observed or completely unknown reactive events in the context of a network representing different intermediates. Our workflow for the catalytic reaction space exploration exclusively focuses on the identification of thermodynamically feasible conversion channels, representative of the (secondary) catalyst deactivation or inhibition paths, which are usually most difficult to anticipate based solely on expert chemical knowledge. Thus, the expert bias is sought to be removed at all steps, and the chemical intuition is limited to the choice of the thermodynamic constraint imposed by the applicable experimental conditions in terms of threshold energy values for allowed transformations. The capabilities of the proposed methodology have been tested by exploring the reactivity of Mn complexes relevant for catalytic hydrogenation chemistry to verify previously postulated activation mechanisms and unravel unexpected reaction channels relevant to rare deactivation events.
Collapse
Affiliation(s)
- Ali Hashemi
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sana Bougueroua
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
27
|
Lavigne C, Gomes G, Pollice R, Aspuru-Guzik A. Guided discovery of chemical reaction pathways with imposed activation. Chem Sci 2022; 13:13857-13871. [PMID: 36544742 PMCID: PMC9710306 DOI: 10.1039/d2sc05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Computational power and quantum chemical methods have improved immensely since computers were first applied to the study of reactivity, but the de novo prediction of chemical reactions has remained challenging. We show that complex reaction pathways can be efficiently predicted in a guided manner using chemical activation imposed by geometrical constraints of specific reactive modes, which we term imposed activation (IACTA). Our approach is demonstrated on realistic and challenging chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural product, a water-mediated Michael addition, and several oxidative addition reactions of complex drug-like molecules. Notably and in contrast with traditional hand-guided computational chemistry calculations, our method requires minimal human involvement and no prior knowledge of the products or the associated mechanisms. We believe that IACTA will be a transformational tool to screen for chemical reactivity and to study both by-product formation and decomposition pathways in a guided way.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada
| | - Gabe Gomes
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada,Department of Chemical Engineering & Applied Chemistry, University of Toronto200 College St.OntarioM5S 3E5Canada,Department of Materials Science & Engineering, University of Toronto184 College St.OntarioM5S 3E4Canada,Vector Institute for Artificial Intelligence661 University Ave Suite 710TorontoOntarioM5G 1M1Canada,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR)661 University AveTorontoOntarioM5GCanada
| |
Collapse
|
28
|
Zhao Q, Savoie BM. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces. Angew Chem Int Ed Engl 2022; 61:e202210693. [PMID: 36074520 PMCID: PMC9827825 DOI: 10.1002/anie.202210693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Algorithmic reaction exploration based on transition state searches has already made inroads into many niche applications, but its potential as a general-purpose tool is still largely unrealized. Computational cost and the absence of benchmark problems involving larger molecules remain obstacles to further progress. Here an ultra-low cost exploration algorithm is implemented and used to explore the reactivity of unimolecular and bimolecular reactants, comprising a total of 581 reactions involving 51 distinct reactants. The algorithm discovers all established reaction pathways, where such comparisons are possible, while also revealing a much richer reactivity landscape, including lower barrier reaction pathways and a strong dependence of reaction conformation in the apparent barriers of the reported reactions. The diversity of these benchmarks illustrate that reaction exploration algorithms are approaching general-purpose capability.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| | - Brett M. Savoie
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
29
|
Ismail I, Chantreau Majerus R, Habershon S. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. J Phys Chem A 2022; 126:7051-7069. [PMID: 36190262 PMCID: PMC9574932 DOI: 10.1021/acs.jpca.2c06408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Graph-based descriptors, such as bond-order matrices and adjacency matrices, offer a simple and compact way of categorizing molecular structures; furthermore, such descriptors can be readily used to catalog chemical reactions (i.e., bond-making and -breaking). As such, a number of graph-based methodologies have been developed with the goal of automating the process of generating chemical reaction network models describing the possible mechanistic chemistry in a given set of reactant species. Here, we outline the evolution of these graph-based reaction discovery schemes, with particular emphasis on more recent methods incorporating graph-based methods with semiempirical and ab initio electronic structure calculations, minimum-energy path refinements, and transition state searches. Using representative examples from homogeneous catalysis and interstellar chemistry, we highlight how these schemes increasingly act as "virtual reaction vessels" for interrogating mechanistic questions. Finally, we highlight where challenges remain, including issues of chemical accuracy and calculation speeds, as well as the inherent challenge of dealing with the vast size of accessible chemical reaction space.
Collapse
Affiliation(s)
- Idil Ismail
- Department of Chemistry, University
of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Scott Habershon
- Department of Chemistry, University
of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
30
|
Unsleber JP, Grimmel SA, Reiher M. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. J Chem Theory Comput 2022; 18:5393-5409. [PMID: 35926118 PMCID: PMC11516015 DOI: 10.1021/acs.jctc.2c00193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
Abstract
Fueled by advances in hardware and algorithm design, large-scale automated explorations of chemical reaction space have become possible. Here, we present our approach to an open-source, extensible framework for explorations of chemical reaction mechanisms based on the first-principles of quantum mechanics. It is intended to facilitate reaction network explorations for diverse chemical problems with a wide range of goals such as mechanism elucidation, reaction path optimization, retrosynthetic path validation, reagent design, and microkinetic modeling. The stringent first-principles basis of all algorithms in our framework is key for the general applicability that avoids any restrictions to specific chemical systems. Such an agile framework requires multiple specialized software components of which we present three modules in this work. The key module, Chemoton, drives the exploration of reaction networks. For the exploration itself, we introduce two new algorithms for elementary-step searches that are based on Newton trajectories. The performance of these algorithms is assessed for a variety of reactions characterized by a broad chemical diversity in terms of bonding patterns and chemical elements. Chemoton successfully recovers the vast majority of these. We provide the resulting data, including large numbers of reactions that were not included in our reference set, to be used as a starting point for further explorations and for future reference.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stephanie A. Grimmel
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Liu X, Wang W, Wright S, Doppelbauer M, Meijer G, Truppe S, PEREZ RIOS JESUS. The chemistry of AlF and CaF production in buffer gas sources. J Chem Phys 2022; 157:074305. [DOI: 10.1063/5.0098378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, we explore the role of chemical reactions on the properties of buffer gas cooled molecular beams. In particular, we focus on scenarios relevant to the formation of AlF and CaF via chemical reactions between the Ca and Al atoms ablated from a solid target in an atmosphere of a fluorine-containing gas, in this case, SF6 and NF3. Reactions are studied following an ab initio molecular dynamics approach, and the results are rationalized following a tree-shaped reaction model based on Bayesian inference. We find that NF3 reacts more efficiently with hot metal atoms to form monofluoride molecules than SF6. In addition, when using NF3, the reaction products have lower kinetic energy, requiring fewer collisions to thermalize with the cryogenic helium. Furthermore, we find that the reaction probability for AlF formation is much higher than for CaF across a broad range of temperatures.
Collapse
Affiliation(s)
- Xiangyue Liu
- Fritz Haber Institut der Max-Planck-Gesellschaft, Germany
| | - Weiqi Wang
- Fritz Haber Institut der Max-Planck-Gesellschaft, Germany
| | - Sidney Wright
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany
| | | | - Gerard Meijer
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Germany
| | - Stefan Truppe
- Fritz Haber Institut der Max-Planck-Gesellschaft, Germany
| | - JESUS PEREZ RIOS
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany
- Stony Brook University Department of Physics and Astronomy
| |
Collapse
|
32
|
Ismail I, Robertson C, Habershon S. Successes and challenges in using machine-learned activation energies in kinetic simulations. J Chem Phys 2022; 157:014109. [DOI: 10.1063/5.0096027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML) methods such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction activation energies, less attention has focused on how the accuracy of ML predictions filter through to predictions of macroscopic observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict activation energies given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three different prototypical reaction networks: formamide decomposition, aldol reactions and decomposition of 3-hydroperoxypropanal. We find that the kinetic modelling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations, but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when ML-based activation energies can be reliable, and when one should take more care in applications to kinetics modelling.
Collapse
Affiliation(s)
| | | | - Scott Habershon
- Department of Chemistry, University of Warwick, United Kingdom
| |
Collapse
|
33
|
Robinson WE, Daines E, van Duppen P, de Jong T, Huck WTS. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nat Chem 2022; 14:623-631. [PMID: 35668214 DOI: 10.1038/s41557-022-00956-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The evolution of life from the prebiotic environment required a gradual process of chemical evolution towards greater molecular complexity. Elaborate prebiotically relevant synthetic routes to the building blocks of life have been established. However, it is still unclear how functional chemical systems evolved with direction using only the interaction between inherent molecular chemical reactivity and the abiotic environment. Here we demonstrate how complex systems of chemical reactions exhibit well-defined self-organization in response to varying environmental conditions. This self-organization allows the compositional complexity of the reaction products to be controlled as a function of factors such as feedstock and catalyst availability. We observe how Breslow's cycle contributes to the reaction composition by feeding C2 building blocks into the network, alongside reaction pathways dominated by formaldehyde-driven chain growth. The emergence of organized systems of chemical reactions in response to changes in the environment offers a potential mechanism for a chemical evolution process that bridges the gap between prebiotic chemical building blocks and the origin of life.
Collapse
Affiliation(s)
- William E Robinson
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Elena Daines
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Peer van Duppen
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Thijs de Jong
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
34
|
Guan X, Das A, Stein CJ, Heidar-Zadeh F, Bertels L, Liu M, Haghighatlari M, Li J, Zhang O, Hao H, Leven I, Head-Gordon M, Head-Gordon T. A benchmark dataset for Hydrogen Combustion. Sci Data 2022; 9:215. [PMID: 35581204 PMCID: PMC9114378 DOI: 10.1038/s41597-022-01330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction.
Collapse
Affiliation(s)
- Xingyi Guan
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Akshaya Das
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
| | - Christopher J Stein
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Theoretical Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048, Duisburg, Germany
| | - Farnaz Heidar-Zadeh
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Luke Bertels
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
| | - Meili Liu
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Mojtaba Haghighatlari
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jie Li
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
| | - Oufan Zhang
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
| | - Hongxia Hao
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Itai Leven
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
35
|
Zhao Q, Hsu HH, Savoie BM. Conformational Sampling for Transition State Searches on a Computational Budget. J Chem Theory Comput 2022; 18:3006-3016. [PMID: 35403426 DOI: 10.1021/acs.jctc.2c00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Hsuan-Hao Hsu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
36
|
Krep L, Roy IS, Kopp W, Schmalz F, Huang C, Leonhard K. Efficient Reaction Space Exploration with ChemTraYzer-TAD. J Chem Inf Model 2022; 62:890-902. [PMID: 35142513 DOI: 10.1021/acs.jcim.1c01197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a reaction model is often a time-consuming process, especially if unknown reactions have to be found and quantified. To alleviate the reaction modeling process, automated procedures for reaction space exploration are highly desired. We present ChemTraYzer-TAD, a new reactive molecular dynamics acceleration technique aimed at efficient reaction space exploration. The new method is based on the basin confinement strategy known from the temperature-accelerated dynamics (TAD) acceleration method. Our method features integrated ChemTraYzer bond-order processing steps for the automatic and on-the-fly determination of the positions of virtual walls in configuration space that confine the system in a potential energy basin. We use the example of 1,3-dioxolane-4-hydroperoxide-2-yl radical oxidation to show that ChemTraYzer-TAD finds more than 100 different parallel reactions for the given set of reactants in less than 2 ns of simulation time. Among the many observed reactions, ChemTraYzer-TAD finds the expected typical low-temperature reactions despite the use of extremely high simulation temperatures up to 5000 K. Our method also finds a new concerted β-scission plus O2 addition with a lower reaction barrier than the literature-known and so-far dominant β-scission.
Collapse
Affiliation(s)
- Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Indu Sekhar Roy
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Wassja Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| |
Collapse
|
37
|
Chen X, Liu M, Gao J. CARNOT: a Fragment-Based Direct Molecular Dynamics and Virtual-Reality Simulation Package for Reactive Systems. J Chem Theory Comput 2022; 18:1297-1313. [PMID: 35129348 DOI: 10.1021/acs.jctc.1c01032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, the study of reaction mechanisms of complex reaction systems such as combustion has been performed on an individual basis by optimizations of transition structure and minimum energy path or by reaction dynamics trajectory calculations for one elementary reaction at a time. It is effective, but time-consuming, whereas important and unexpected processes could have been missed. In this article, we present a direct molecular dynamics (DMD) approach and a virtual-reality simulation program, CARNOT, in which plausible chemical reactions are simulated simultaneously at finite temperature and pressure conditions. A key concept of the present ab initio molecular dynamics method is to partition a large, chemically reactive system into molecular fragments that can be adjusted on the fly of a DMD simulation. The theory represents an extension of the explicit polarization method to reactive events, called ReX-Pol. We propose a highest-and-lowest adapted-spin approximation to define the local spins of individual fragments, rather than treating the entire system by a delocalized wave function. Consequently, the present ab initio DMD can be applied to reactive systems consisting of an arbitrarily varying number of closed and open-shell fragments such as free radicals, zwitterions, and separate ions found in combustion and other reactions. A graph-data structure algorithm was incorporated in CARNOT for the analysis of reaction networks, suitable for reaction mechanism reduction. Employing the PW91 density functional theory and the 6-31+G(d) basis set, the capabilities of the CARNOT program were illustrated by a combustion reaction, consisting of 28 650 atoms, and by reaction network analysis that revealed a range of mechanistic and dynamical events. The method may be useful for applications to other types of complex reactions.
Collapse
Affiliation(s)
- Xin Chen
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China
| | - Meiyi Liu
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China
| | - Jiali Gao
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Garay-Ruiz D, Álvarez-Moreno M, Bo C, Martínez-Núñez E. New Tools for Taming Complex Reaction Networks: The Unimolecular Decomposition of Indole Revisited. ACS PHYSICAL CHEMISTRY AU 2022; 2:225-236. [PMID: 36855573 PMCID: PMC9718323 DOI: 10.1021/acsphyschemau.1c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The level of detail attained in the computational description of reaction mechanisms can be vastly improved through tools for automated chemical space exploration, particularly for systems of small to medium size. Under this approach, the unimolecular decomposition landscape for indole was explored through the automated reaction mechanism discovery program AutoMeKin. Nevertheless, the sheer complexity of the obtained mechanisms might be a hindrance regarding their chemical interpretation. In this spirit, the new Python library amk-tools has been designed to read and manipulate complex reaction networks, greatly simplifying their overall analysis. The package provides interactive dashboards featuring visualizations of the network, the three-dimensional (3D) molecular structures and vibrational normal modes of all chemical species, and the corresponding energy profiles for selected pathways. The combination of the joined mechanism generation and postprocessing workflow with the rich chemistry of indole decomposition enabled us to find new details of the reaction (obtained at the CCSD(T)/aug-cc-pVTZ//M06-2X/MG3S level of theory) that were not reported before: (i) 16 pathways leading to the formation of HCN and NH3 (via amino radical); (ii) a barrierless reaction between methylene radical and phenyl isocyanide, which might be an operative mechanism under the conditions of the interstellar medium; and (iii) reaction channels leading to both hydrogen cyanide and hydrogen isocyanide, of potential astrochemical interest as the computed HNC/HCN ratios greatly exceed the calculated equilibrium value at very low temperatures. The reported reaction networks can be very valuable to supplement databases of kinetic data, which is of remarkable interest for pyrolysis and astrochemical studies.
Collapse
Affiliation(s)
- Diego Garay-Ruiz
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Moises Álvarez-Moreno
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain,
| | - Emilio Martínez-Núñez
- Departmento
de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain,
| |
Collapse
|
39
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
40
|
Abbott JW, Hanke F. Kinetically Corrected Monte Carlo-Molecular Dynamics Simulations of Solid Electrolyte Interphase Growth. J Chem Theory Comput 2022; 18:925-934. [PMID: 35007421 DOI: 10.1021/acs.jctc.1c00921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a kinetic approach to the Monte Carlo-molecular dynamics (MC-MD) method for simulating reactive liquids using nonreactive force fields. A graphical reaction representation allows definition of reactions of arbitrary complexity, including their local solvation environment. Reaction probabilities and molecular dynamics (MD) simulation times are derived from ab initio calculations. Detailed validation is followed by studying the development of the solid electrolyte interphase (SEI) in lithium-ion batteries. We reproduce the experimentally observed two-layered structure on graphite, with an inorganic layer close to the anode and an outer organic layer. This structure develops via a near-shore aggregation mechanism.
Collapse
|
41
|
Baiardi A, Grimmel SA, Steiner M, Türtscher PL, Unsleber JP, Weymuth T, Reiher M. Expansive Quantum Mechanical Exploration of Chemical Reaction Paths. Acc Chem Res 2022; 55:35-43. [PMID: 34918903 DOI: 10.1021/acs.accounts.1c00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum mechanical methods have been well-established for the elucidation of reaction paths of chemical processes and for the explicit dynamics of molecular systems. While they are usually deployed in routine manual calculations on reactions for which some insights are already available (typically from experiment), new algorithms and continuously increasing capabilities of modern computer hardware allow for exploratory open-ended computational campaigns that are unbiased and therefore enable unexpected discoveries. Highly efficient and even automated procedures facilitate systematic approaches toward the exploration of uncharted territory in molecular transformations and dynamics. In this work, we elaborate on such explorative approaches that range from reaction network explorations with (stationary) quantum chemical methods to explorative molecular dynamics and migrant wave packet dynamics. The focus is on recent developments that cover the following strategies. (i) Pruning search options for elementary reaction steps by heuristic rules based on the first-principles of quantum mechanics: Rules are required for reducing the combinatorial explosion of potentially reactive atom pairings, and rooting them in concepts derived from the electronic wave function makes them applicable to any molecular system. (ii) Enforcing reactive events by external biases: Inducing a reaction requires constraints that steer and direct elementary-step searches, which can be formulated in terms of forces, velocities, or supplementary potentials. (iii) Manual steering facilitated by interactive quantum mechanics: As ultrafast quantum chemical methods allow for real-time manual interactions with molecular systems, human-intuition-guided paths can be easily explored with suitable human-machine interfaces. (iv) New approaches for transition-state optimization with continuous curve representations can provide stable schemes to be driven in an automated way by allowing for an efficient tuning of the curve's parameters (instead of a manipulation of a collection of structures along the path), and (v) reactive molecular dynamics and direct wave packet propagation exploit the equations of motion of an underlying mechanical theory (usually, classical Newtonian mechanics or Schrödinger quantum mechanics). Explorative approaches are likely to replace the current state of the art in computational chemistry, because they reduce the human effort to be invested in reaction path elucidations, they are less prone to errors and bias-free, and they cover more extensive regions of the relevant configuration space. As a result, computational investigations that rely on these techniques are more likely to deliver surprising discoveries.
Collapse
Affiliation(s)
- Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A. Grimmel
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L. Türtscher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P. Unsleber
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Thomas Weymuth
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
42
|
Schmitz G, Yönder Ö, Schnieder B, Schmid R, Hättig C. An automatized workflow from molecular dynamic simulation to quantum chemical methods to identify elementary reactions and compute reaction constants. J Comput Chem 2021; 42:2264-2282. [PMID: 34636424 DOI: 10.1002/jcc.26757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present an automatized workflow which, starting from molecular dynamics simulations, identifies reaction events, filters them, and prepares them for accurate quantum chemical calculations using, for example, Density Functional Theory (DFT) or Coupled Cluster methods. The capabilities of the automatized workflow are demonstrated by the example of simulations for the combustion of some polycyclic aromatic hydrocarbons (PAHs). It is shown how key elementary reaction candidates are filtered out of a much larger set of redundant reactions and refined further. The molecular species in question are optimized using DFT and reaction energies, barrier heights, and reaction rates are calculated. The setup is general enough to include at this stage configurational sampling, which can be exploited in the future. Using the introduced machinery, we investigate how the observed reaction types depend on the gas atmosphere used in the molecular dynamics simulation. For the re-optimization on the DFT level, we show how the additional information needed to switch from reactive force-field to electronic structure calculations can be filled in and study how well ReaxFF and DFT agree with each other and shine light on the perspective of using more accurate semi-empirical methods in the MD simulation.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, Bochum, Germany
| | - Özlem Yönder
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Bastian Schnieder
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, Bochum, Germany
| | - Rochus Schmid
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
43
|
Sharma S, Arya A, Cruz R, Cleaves II HJ. Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life (Basel) 2021; 11:1140. [PMID: 34833016 PMCID: PMC8624352 DOI: 10.3390/life11111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotic chemistry often involves the study of complex systems of chemical reactions that form large networks with a large number of diverse species. Such complex systems may have given rise to emergent phenomena that ultimately led to the origin of life on Earth. The environmental conditions and processes involved in this emergence may not be fully recapitulable, making it difficult for experimentalists to study prebiotic systems in laboratory simulations. Computational chemistry offers efficient ways to study such chemical systems and identify the ones most likely to display complex properties associated with life. Here, we review tools and techniques for modelling prebiotic chemical reaction networks and outline possible ways to identify self-replicating features that are central to many origin-of-life models.
Collapse
Affiliation(s)
- Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Biochemistry, Deshbandhu College, University of Delhi, New Delhi 110019, India
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Aayush Arya
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Physics, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144001, India
| | - Romulo Cruz
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Big Data Laboratory, Information and Communications Technology Center (CTIC), National University of Engineering, Amaru 210, Lima 15333, Peru
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
44
|
Cazenille L, Baccouche A, Aubert-Kato N. Automated exploration of DNA-based structure self-assembly networks. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210848. [PMID: 34754499 PMCID: PMC8493194 DOI: 10.1098/rsos.210848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Finding DNA sequences capable of folding into specific nanostructures is a hard problem, as it involves very large search spaces and complex nonlinear dynamics. Typical methods to solve it aim to reduce the search space by minimizing unwanted interactions through restrictions on the design (e.g. staples in DNA origami or voxel-based designs in DNA Bricks). Here, we present a novel methodology that aims to reduce this search space by identifying the relevant properties of a given assembly system to the emergence of various families of structures (e.g. simple structures, polymers, branched structures). For a given set of DNA strands, our approach automatically finds chemical reaction networks (CRNs) that generate sets of structures exhibiting ranges of specific user-specified properties, such as length and type of structures or their frequency of occurrence. For each set, we enumerate the possible DNA structures that can be generated through domain-level interactions, identify the most prevalent structures, find the best-performing sequence sets to the emergence of target structures, and assess CRNs' robustness to the removal of reaction pathways. Our results suggest a connection between the characteristics of DNA strands and the distribution of generated structure families.
Collapse
Affiliation(s)
- L. Cazenille
- Department of Information Sciences, Ochanomizu University, Tokyo, Japan
| | | | - N. Aubert-Kato
- Department of Information Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
45
|
Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Top Catal 2021. [DOI: 10.1007/s11244-021-01506-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Martínez-Núñez E, Barnes GL, Glowacki DR, Kopec S, Peláez D, Rodríguez A, Rodríguez-Fernández R, Shannon RJ, Stewart JJP, Tahoces PG, Vazquez SA. AutoMeKin2021: An open-source program for automated reaction discovery. J Comput Chem 2021; 42:2036-2048. [PMID: 34387374 DOI: 10.1002/jcc.26734] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023]
Abstract
AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare-event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond-order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin.
Collapse
Affiliation(s)
- Emilio Martínez-Núñez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York, USA
| | - David R Glowacki
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Sabine Kopec
- Institut de Sciences Moléculaires d'Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, Orsay, France
| | - Daniel Peláez
- Institut de Sciences Moléculaires d'Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, Orsay, France
| | - Aurelio Rodríguez
- Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
| | | | - Robin J Shannon
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | | | - Pablo G Tahoces
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Saulo A Vazquez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
47
|
Xie X, Clark Spotte-Smith EW, Wen M, Patel HD, Blau SM, Persson KA. Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network. J Am Chem Soc 2021; 143:13245-13258. [PMID: 34379977 DOI: 10.1021/jacs.1c05807] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interfacial reactions are notoriously difficult to characterize, and robust prediction of the chemical evolution and associated functionality of the resulting surface film is one of the grand challenges of materials chemistry. The solid-electrolyte interphase (SEI), critical to Li-ion batteries (LIBs), exemplifies such a surface film, and despite decades of work, considerable controversy remains regarding the major components of the SEI as well as their formation mechanisms. Here we use a reaction network to investigate whether lithium ethylene monocarbonate (LEMC) or lithium ethylene dicarbonate (LEDC) is the major organic component of the LIB SEI. Our data-driven, automated methodology is based on a systematic generation of relevant species using a general fragmentation/recombination procedure which provides the basis for a vast thermodynamic reaction landscape, calculated with density functional theory. The shortest pathfinding algorithms are employed to explore the reaction landscape and obtain previously proposed formation mechanisms of LEMC as well as several new reaction pathways and intermediates. For example, we identify two novel LEMC formation mechanisms: one which involves LiH generation and another that involves breaking the (CH2)O-C(═O)OLi bond in LEDC. Most importantly, we find that all identified paths, which are also kinetically favorable under the explored conditions, require water as a reactant. This condition severely limits the amount of LEMC that can form, as compared with LEDC, a conclusion that has direct impact on the SEI formation in Li-ion energy storage systems. Finally, the data-driven framework presented here is generally applicable to any electrochemical system and expected to improve our understanding of surface passivation.
Collapse
Affiliation(s)
- Xiaowei Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Evan Walter Clark Spotte-Smith
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Mingjian Wen
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hetal D Patel
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Samuel M Blau
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Takahashi K, Satoshi M. Mining hydroformylation in complex reaction network via graph theory. RSC Adv 2021; 11:23235-23240. [PMID: 35479801 PMCID: PMC9036754 DOI: 10.1039/d1ra03395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Data science is introduced to identify the reactant, product, and reaction path in the chemical reaction network. Cobalt catalyzed hydroformylation is investigated where the reaction network is built via first principles calculations. The closeness centrality and high frequency node are found to be the reactant cobalt tetracarbonyl hydride. In addition, betweenness centrality uncovers three reaction paths which have the products of aldehyde, CH2O, and CO2, respectively. The energy profile determines that the reaction path leading to aldehyde is energetically favored; thus, the reaction path for cobalt catalyzed hydroformylation is identified without kinetics. Hence, the proposed approach can act as a first step towards understanding the complex chemical reaction network and towards further kinetic understanding of the chemical reaction.
Collapse
Affiliation(s)
- Keisuke Takahashi
- Department of Chemistry, Hokkaido University North 10, West 8 Sapporo 060-8510 Japan
| | - Maeda Satoshi
- Department of Chemistry, Hokkaido University North 10, West 8 Sapporo 060-8510 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| |
Collapse
|
49
|
Xu J, Cao XM, Hu P. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Phys Chem Chem Phys 2021; 23:11155-11179. [PMID: 33972971 DOI: 10.1039/d1cp01349a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterogeneous catalysis plays a significant role in the modern chemical industry. Towards the rational design of novel catalysts, understanding reactions over surfaces is the most essential aspect. Typical industrial catalytic processes such as syngas conversion and methane utilisation can generate a large reaction network comprising thousands of intermediates and reaction pairs. This complexity not only arises from the permutation of transformations between species but also from the extra reaction channels offered by distinct surface sites. Despite the success in investigating surface reactions at the atomic scale, the huge computational expense of ab initio methods hinders the exploration of such complicated reaction networks. With the proliferation of catalysis studies, machine learning as an emerging tool can take advantage of the accumulated reaction data to emulate the output of ab initio methods towards swift reaction prediction. Here, we briefly summarise the conventional workflow of reaction prediction, including reaction network generation, ab initio thermodynamics and microkinetic modelling. An overview of the frequently used regression models in machine learning is presented. As a promising alternative to full ab initio calculations, machine learning interatomic potentials are highlighted. Furthermore, we survey applications assisted by these methods for accelerating reaction prediction, exploring reaction networks, and computational catalyst design. Finally, we envisage future directions in computationally investigating reactions and implementing machine learning algorithms in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiayan Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China. and School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - P Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China. and School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
50
|
Stuyver T, Shaik S. Promotion Energy Analysis Predicts Reaction Modes: Nucleophilic and Electrophilic Aromatic Substitution Reactions. J Am Chem Soc 2021; 143:4367-4378. [PMID: 33689334 DOI: 10.1021/jacs.1c00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To develop an approach to pre-emptively predict the existence of major reaction modes associated with a chemical system, based on exclusive consideration of reactant properties, we build herein on the valence bond perspective of chemical reactivity. In this perspective, elementary chemical reactions are conceptualized as crossovers between individual diabatic/semilocalized states. As demonstrated, the spacings between the main diabatic states in the reactant geometries-the so-called promotion energies-contain predictive information about which types of crossings are likely to occur on a potential energy surface, facilitating the identification of potential transition states and products. As an added bonus, promotion energy analysis provides direct insight into the impact of environmental effects, e.g., the presence of (polar) solvents and/or (local) electric fields, on a mechanistic landscape. We illustrate the usefulness of our approach by focusing on model nucleophilic and electrophilic aromatic substitution reactions. Overall, we envision our analysis to be useful not only as a tool for conceptualizing individual mechanistic landscapes but also as a facilitator of systematic reaction-network exploration efforts. Because the emerging VB descriptors are computationally inexpensive (and can alternatively be inferred through machine learning), they could be evaluated on-the-fly as part of an exploration algorithm. The so-predicted reaction modes could subsequently be examined in detail through computationally more-demanding methods.
Collapse
Affiliation(s)
- Thijs Stuyver
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|