1
|
Daas K, Klute E, Seidl M, Gori-Giorgi P. Møller-Plesset Adiabatic Connection at Large Coupling Strengths for Open-Shell Systems. J Phys Chem A 2024; 128:4138-4149. [PMID: 38717868 PMCID: PMC11129316 DOI: 10.1021/acs.jpca.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024]
Abstract
We study the adiabatic connection that has as weak-coupling expansion the Møller-Plesset perturbation series, generalizing to the open-shell case previous closed-shell results for the large-coupling limit. We first focus on the hydrogen atom with fractional spins, providing results along the adiabatic connection from small to large coupling strengths. We reveal an intriguing phase diagram and an equation for the large-coupling leading order that has closed-form solutions for specific choices of its relevant quantum numbers. We then show that the hydrogen atom results provide variational estimates for the large-coupling leading terms for the general many-electron open-shell case in terms of functionals of the Hartree-Fock α-spin and β-spin densities.
Collapse
Affiliation(s)
- Kimberly
J. Daas
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Eveline Klute
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Michael Seidl
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Paola Gori-Giorgi
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
- Microsoft
Research AI for Science, Evert van de Beekstraat 354, Schiphol 1118 CZ, The Netherlands
| |
Collapse
|
2
|
Daas KJ, Kooi DP, Benyahia T, Seidl M, Gori-Giorgi P. Large-Z atoms in the strong-interaction limit of DFT: Implications for gradient expansions and for the Lieb-Oxford bound. J Chem Phys 2023; 159:234114. [PMID: 38112505 DOI: 10.1063/5.0174592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023] Open
Abstract
We numerically study the strong-interaction limit of the exchange-correlation functional for neutral atoms and Bohr atoms as the number of electrons increases. Using a compact representation, we analyze the second-order gradient expansion, comparing it with the one for exchange (weak interaction limit). The two gradient expansions, at strong and weak interaction, turn out to be very similar in magnitude but with opposite signs. We find that the point-charge plus continuum model is surprisingly accurate for the gradient expansion coefficient at strong coupling, while generalized gradient approximations, such as Perdew-Burke-Ernzerhof (PBE) and PBEsol, severely underestimate it. We then use our results to analyze the Lieb-Oxford bound from the point of view of slowly varying densities, clarifying some aspects on the bound at a fixed number of electrons.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Amsterdam, The Netherlands
| | - Tarik Benyahia
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Daas KJ, Kooi DP, Peters NC, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Regularized and Opposite Spin-Scaled Functionals from Møller-Plesset Adiabatic Connection─Higher Accuracy at Lower Cost. J Phys Chem Lett 2023; 14:8448-8459. [PMID: 37721318 DOI: 10.1021/acs.jpclett.3c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Noncovalent interactions (NCIs) play a crucial role in biology, chemistry, material science, and everything in between. To improve pure quantum-chemical simulations of NCIs, we propose a methodology for constructing approximate correlation energies by combining an interpolation along the Møller-Plesset adiabatic connection (MP AC) with a regularization and spin-scaling strategy applied to MP2 correlation energies. This combination yields cosκos-SPL2, which exhibits superior accuracy for NCIs compared to any of the individual strategies. With the N4 formal scaling, cosκos-SPL2 is competitive or often outperforms more expensive dispersion-corrected double hybrids for NCIs. The accuracy of cosκos-SPL2 particularly shines for anionic halogen bonded complexes, where it surpasses standard dispersion-corrected DFT by a factor of 3 to 5.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Nina C Peters
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
5
|
Daas T, Kooi DP, Grooteman AJAF, Seidl M, Gori-Giorgi P. Gradient Expansions for the Large-Coupling Strength Limit of the Møller-Plesset Adiabatic Connection. J Chem Theory Comput 2022; 18:1584-1594. [PMID: 35179386 PMCID: PMC8908763 DOI: 10.1021/acs.jctc.1c01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The adiabatic connection that has, as weak-interaction expansion, the Møller-Plesset perturbation series has been recently shown to have a large coupling-strength expansion, in terms of functionals of the Hartree-Fock density with a clear physical meaning. In this work, we accurately evaluate these density functionals and we extract second-order gradient coefficients from the data for neutral atoms, following ideas similar to the ones used in the literature for exchange, with some modifications. These new gradient expansions will be the key ingredient for performing interpolations that have already been shown to reduce dramatically MP2 errors for large noncovalent complexes. As a byproduct, our investigation of neutral atoms with large number of electrons N indicates that the second-order gradient expansion for exchange grows as N log(N) rather than as N, as often reported in the literature.
Collapse
Affiliation(s)
- Timothy
J. Daas
- Department of Chemistry &
Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Faculty of Science, Vrije
Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P. Kooi
- Department of Chemistry &
Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Faculty of Science, Vrije
Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Arthur J. A. F. Grooteman
- Department of Chemistry &
Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Faculty of Science, Vrije
Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department of Chemistry &
Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Faculty of Science, Vrije
Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry &
Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Faculty of Science, Vrije
Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Daas T, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Noncovalent Interactions from Models for the Møller-Plesset Adiabatic Connection. J Phys Chem Lett 2021; 12:4867-4875. [PMID: 34003655 PMCID: PMC8280728 DOI: 10.1021/acs.jpclett.1c01157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 05/08/2023]
Abstract
Given the omnipresence of noncovalent interactions (NCIs), their accurate simulations are of crucial importance across various scientific disciplines. Here we construct accurate models for the description of NCIs by an interpolation along the Møller-Plesset adiabatic connection (MP AC). Our interpolation approximates the correlation energy, by recovering MP2 at small coupling strengths and the correct large-coupling strength expansion of the MP AC, recently shown to be a functional of the Hartree-Fock density. Our models are size consistent for fragments with nondegenerate ground states, have the same cost as double hybrids, and require no dispersion corrections to capture NCIs accurately. These interpolations greatly reduce large MP2 errors for typical π-stacking complexes (e.g., benzene-pyridine dimers) and for the L7 data set. They are also competitive with state-of-the-art dispersion enhanced functionals and can even significantly outperform them for a variety of data sets, such as CT7 and L7.
Collapse
Affiliation(s)
- Timothy
J. Daas
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Paola Gori-Giorgi
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Physical
and Theoretical Chemistry, University of
Saarland, 66123 Saarbrücken, Germany
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Daas TJ, Grossi J, Vuckovic S, Musslimani ZH, Kooi DP, Seidl M, Giesbertz KJH, Gori-Giorgi P. Large coupling-strength expansion of the Møller–Plesset adiabatic connection: From paradigmatic cases to variational expressions for the leading terms. J Chem Phys 2020; 153:214112. [DOI: 10.1063/5.0029084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy J. Daas
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Juri Grossi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ziad H. Musslimani
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P. Kooi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Klaas J. H. Giesbertz
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Grossi J, Musslimani ZH, Seidl M, Gori-Giorgi P. Kohn-Sham equations with functionals from the strictly-correlated regime: investigation with a spectral renormalization method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:475602. [PMID: 32759484 DOI: 10.1088/1361-648x/abace2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
We re-adapt a spectral renormalization method, introduced in nonlinear optics, to solve the Kohn-Sham (KS) equations of density functional theory, with a focus on functionals based on the strictly-correlated electrons (SCE) regime, which are particularly challenging to converge. Important aspects of the method are: (i) the eigenvalues and the density are computed simultaneously; (ii) it converges using randomized initial guesses; (iii) easy to implement. Using this method we could converge for the first time the Kohn-Sham equations with functionals that include the next leading term in the strong-interaction limit of density functional theory, the so called zero-point energy (ZPE) functional as well as with an interaction-strength-interpolation functional that includes both the exact SCE and ZPE terms. This work is the first building block for future studies on quantum systems confined in low dimensions with different statistics and long-range repulsions, such as localization properties of fermions and bosons with strong long-range repulsive interactions in the presence of a random external potential.
Collapse
Affiliation(s)
- Juri Grossi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Ziad H Musslimani
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, United States of America
| | - Michael Seidl
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Gerolin A, Grossi J, Gori-Giorgi P. Kinetic Correlation Functionals from the Entropic Regularization of the Strictly Correlated Electrons Problem. J Chem Theory Comput 2020; 16:488-498. [PMID: 31855421 PMCID: PMC6964418 DOI: 10.1021/acs.jctc.9b01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 11/29/2022]
Abstract
In this work, we study the entropic regularization of the strictly correlated electrons formalism, discussing the implications for density functional theory and establishing a link with earlier works on quantum kinetic energy and classical entropy. We carry out a very preliminary investigation (using simplified models) on the use of the solution of the entropic regularized problem to build approximations for the kinetic correlation functional at large coupling strengths. We also analyze lower and upper bounds to the Hohenberg-Kohn functional using the entropic regularized strictly correlated electrons problem.
Collapse
Affiliation(s)
- Augusto Gerolin
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Juri Grossi
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Fabiano E, Śmiga S, Giarrusso S, Daas KJ, Della Sala F, Grabowski I, Gori-Giorgi P. Investigation of the Exchange-Correlation Potentials of Functionals Based on the Adiabatic Connection Interpolation. J Chem Theory Comput 2019; 15:1006-1015. [PMID: 30620596 DOI: 10.1021/acs.jctc.8b01037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the correlation potentials produced by various adiabatic connection models (ACMs) for several atoms and molecules. The results have been compared to accurate reference potentials (coupled cluster and quantum Monte Carlo results) as well as to state-of-the-art ab initio DFT approaches. We have found that all the ACMs yield correlation potentials that exhibit a correct behavior, quite resembling scaled second-order Görling-Levy (GL2) potentials and including most of the physically meaningful features of the accurate reference data. The behavior and contribution of the strong-interaction limit potentials have also been investigated and discussed.
Collapse
Affiliation(s)
- Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni , Campus Unisalento, 73100 Lecce , Italy
- Center for Biomolecular Nanotechnologies @UNILE , Istituto Italiano di Tecnologia , Via Barsanti , I-73010 Arnesano , Italy
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics , Nicolaus Copernicus University , Grudziadzka 5 , 87-100 Torun , Poland
| | - Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Kimberly J Daas
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni , Campus Unisalento, 73100 Lecce , Italy
- Center for Biomolecular Nanotechnologies @UNILE , Istituto Italiano di Tecnologia , Via Barsanti , I-73010 Arnesano , Italy
| | - Ireneusz Grabowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics , Nicolaus Copernicus University , Grudziadzka 5 , 87-100 Torun , Poland
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| |
Collapse
|
11
|
Seidl M, Giarrusso S, Vuckovic S, Fabiano E, Gori-Giorgi P. Communication: Strong-interaction limit of an adiabatic connection in Hartree-Fock theory. J Chem Phys 2018; 149:241101. [DOI: 10.1063/1.5078565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Seidl
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Mori-Sánchez P, Cohen AJ. Exact Density Functional Obtained via the Levy Constrained Search. J Phys Chem Lett 2018; 9:4910-4914. [PMID: 30096231 DOI: 10.1021/acs.jpclett.8b02332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A stochastic minimization method for a real-space wave function, Ψ(r1, r2...r n), constrained to a chosen density, ρ(r), is developed. It enables the explicit calculation of the Levy constrained search, F[ρ] = minΨ→ρ⟨Ψ| T̂ + V̂ ee|Ψ⟩, which gives the exact functional of density functional theory. This general method is illustrated in the evaluation of F[ρ] for densities in one dimension with a soft-Coulomb interaction. Additionally, procedures are given to determine the first and second functional derivatives, δ F/δρ(r) and δ2 F/[δρ(r)δρ(r')]. For a chosen external potential, v(r), the functional and its derivatives are used in minimizations over densities to give the exact energy, E v, without needing to solve the Schrödinger equation.
Collapse
Affiliation(s)
- Paula Mori-Sánchez
- Departamento de Química and Instituto de Física de la Materia Condensada (IFIMAC) , Universidad Autónoma de Madrid , 28049 , Madrid , Spain
| | - Aron J Cohen
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| |
Collapse
|
13
|
Giarrusso S, Vuckovic S, Gori-Giorgi P. Response Potential in the Strong-Interaction Limit of Density Functional Theory: Analysis and Comparison with the Coupling-Constant Average. J Chem Theory Comput 2018; 14:4151-4167. [PMID: 29906106 PMCID: PMC6096453 DOI: 10.1021/acs.jctc.8b00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the formalism of the conditional amplitude, we study the response part of the exchange-correlation potential in the strong-coupling limit of density functional theory, analyzing its peculiar features and comparing it with the response potential averaged over the coupling constant for small atoms and for the hydrogen molecule. We also use a simple one-dimensional model of a stretched heteronuclear molecule to derive exact properties of the response potential in the strong-coupling limit. The simplicity of the model allows us to unveil relevant features also of the exact Kohn-Sham potential and its different components, namely the appearance of a second peak in the correlation kinetic potential on the side of the most electronegative atom.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| |
Collapse
|
14
|
Theophilou I, Buchholz F, Eich FG, Ruggenthaler M, Rubio A. Kinetic-Energy Density-Functional Theory on a Lattice. J Chem Theory Comput 2018; 14:4072-4087. [PMID: 29969552 PMCID: PMC6096452 DOI: 10.1021/acs.jctc.8b00292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present a kinetic-energy density-functional theory and the corresponding
kinetic-energy Kohn–Sham (keKS) scheme on a lattice and show
that, by including more observables explicitly in a density-functional
approach, already simple approximation strategies lead to very accurate
results. Here, we promote the kinetic-energy density to a fundamental
variable alongside the density and show for specific cases (analytically
and numerically) that there is a one-to-one correspondence between
the external pair of on-site potential and site-dependent hopping
and the internal pair of density and kinetic-energy density. On the
basis of this mapping, we establish two unknown effective fields,
the mean-field exchange-correlation potential and the mean-field exchange-correlation
hopping, which force the keKS system to generate the same kinetic-energy
density and density as the fully interacting one. We show, by a decomposition
based on the equations of motions for the density and the kinetic-energy
density, that we can construct simple orbital-dependent functionals
that outperform the corresponding exact-exchange Kohn–Sham
(KS) approximation of standard density-functional theory. We do so
by considering the exact KS and keKS systems and comparing the unknown
correlation contributions as well as by comparing self-consistent
calculations based on the mean-field exchange (for the effective potential)
and a uniform (for the effective hopping) approximation for the keKS
and the exact-exchange approximation for the KS system, respectively.
Collapse
Affiliation(s)
- Iris Theophilou
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - Florian Buchholz
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - F G Eich
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - Michael Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science , Hamburg 22761 , Germany.,Center for Computational Quantum Physics (CCQ) , Flatiron Institute , New York , New York 10010 , United States
| |
Collapse
|