1
|
Xu P, Wang D, Li D, Long J, Zhang S, Zhang B. UV wavelength-dependent photoionization quantum yields for the dark 1nπ* state of aqueous thymidine. Phys Chem Chem Phys 2024; 26:26251-26257. [PMID: 39229763 DOI: 10.1039/d4cp02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Despite the important role of the dark 1nπ* state in the photostability of thymidine in aqueous solution, no detailed ultraviolet (UV) wavelength-dependent investigation of the 1nπ* quantum yield (QY) in aqueous thymidine has been experimentally performed. Here, we investigate the wavelength-dependent photoemission spectra of aqueous thymidine from 266.7 to 240 nm using liquid-microjet photoelectron spectroscopy. Two observed ionization channels are assigned to resonant ionizations from 1ππ* to the cationic ground state D0 (π-1) and 1nπ* to the cationic excited state D1 (n-1). The weak 1nπ* → D1 ionization channel appears due to ultrafast 1ππ* → 1nπ* internal conversion within the pulse duration of ∼180 fs. The obtained 1nπ* quantum yields exhibit a strong wavelength dependence, ranging from 0 to 0.27 ± 0.01, suggesting a hitherto uncharacterized 1nπ* feature. The corresponding vertical ionization energies (VIEs) of D0 and D1 of aqueous thymidine are experimentally determined to be 8.47 ± 0.12 eV and 9.22 ± 0.29 eV, respectively. Our UV wavelength-dependent QYs might indicate that different structural critical points to connect the multidimensional 1ππ*/1nπ* conical intersection seam onto the multidimensional potential energy surface of the 1ππ* state might exist and determine the relaxation processes of aqueous thymidine upon UV excitation.
Collapse
Affiliation(s)
- Piao Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duoduo Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyou Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
2
|
Miura Y, Yamamoto YI, Karashima S, Orimo N, Hara A, Fukuoka K, Ishiyama T, Suzuki T. Formation of Long-Lived Dark States during Electronic Relaxation of Pyrimidine Nucleobases Studied Using Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy. J Am Chem Soc 2023; 145:3369-3381. [PMID: 36724068 DOI: 10.1021/jacs.2c09803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ultrafast electronic relaxation of nucleobases from 1ππ* states to the ground state (S0) is considered essential for the photostability of DNA. However, transient absorption spectroscopy (TAS) has indicated that some nucleobases in aqueous solutions create long-lived 1nπ*/3ππ* dark states from the 1ππ* states with a high quantum yield of 0.4-0.5. We investigated electronic relaxation in pyrimidine nucleobases in both aqueous solutions and the gas phase using extreme ultraviolet (EUV) time-resolved photoelectron spectroscopy. Femtosecond EUV probe pulses cause ionization from all electronic states involved in the relaxation process, providing a clear overview of the electronic dynamics. The 1nπ* quantum yields for aqueous cytidine and uracil (Ura) derivatives were found to be considerably lower (<0.07) than previous estimates reported by TAS. On the other hand, aqueous thymine (Thy) and thymidine exhibited a longer 1ππ* lifetime and a higher quantum yield (0.12-0.22) for the 1nπ* state. A similar trend was found for isolated Thy and Ura in the gas phase: the 1ππ* lifetimes are 39 and 17 fs and the quantum yield for 1nπ* are 1.0 and 0.45 for Thy and Ura, respectively. The result indicates that single methylation to the C5 position hinders the out-of-plane deformation that drives the system to the conical intersection region between 1ππ* and S0, providing a large impact on the photophysics/photochemistry of a pyrimidine nucleobase. The significant reduction of 1nπ* yield in aqueous solution is ascribed to the destabilization of the 1nπ* state induced by hydrogen bonding.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Natsumi Orimo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Ayano Hara
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Kanae Fukuoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama930-8555, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| |
Collapse
|
3
|
Milovanović B, Novak J, Etinski M, Domcke W, Došlić N. On the propensity of formation of cyclobutane dimers in face-to-face and face-to-back uracil stacks in solution. Phys Chem Chem Phys 2022; 24:14836-14845. [PMID: 35697028 DOI: 10.1039/d2cp00495j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV irradiation of RNA leads to the formation of intra- and inter-strand crosslinks of cyclobutane type. Despite the importance of this reaction, relatively little is known about how the mutual orientation of the two bases affects the outcome of the reaction. Here we report a comparative nonadiabatic molecular dynamics study of face-to-back (F2B) and face-to-face (F2F) stacked uracil-water clusters. The computations were performed using the second-order algebraic-diagrammatic-construction (ADC(2)) method. We found that F2B stacked uracil-water clusters either relax non-reactively to the ground state by an ethylenic twist around the CC bond or remain in the lowest nπ* state in which the two bases gradually move away from each other. This finding is consistent with the low propensity for the formation of intra-strand cyclobutane dimers between adjacent RNA bases. On the contrary, in F2F stacked uracil-water clusters, in addition to non-reactive deactivation, we found a pro-reactive deactivation pathway, which may lead to the formation of cyclobutane uracil dimers in the electronic ground state. On a qualitative level, the observed photodynamics of F2F stacked uracil-water clusters explains the greater propensity of RNA to form inter-strand cyclobutane-type crosslinks.
Collapse
Affiliation(s)
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, HR-51000 Rijeka, Croatia.,Scientific and Educational Center "Biomedical Technologies" School of Medical Biology, South Ural State University, RU-454080, Chelyabinsk, Russia.,Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| | - Mihajlo Etinski
- University of Belgrade, Faculty of Physical Chemistry, Belgrade, Serbia
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
4
|
Mattioli G, Avaldi L, Bolognesi P, Bozek JD, Castrovilli MC, Chiarinelli J, Domaracka A, Indrajith S, Maclot S, Milosavljević AR, Nicolafrancesco C, Rousseau P. Water-biomolecule clusters studied by photoemission spectroscopy and multilevel atomistic simulations: hydration or solvation? Phys Chem Chem Phys 2021; 23:15049-15058. [PMID: 34231588 DOI: 10.1039/d1cp02031e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The properties of mixed water-uracil nanoaggregates have been probed by core electron-photoemission measurements to investigate supramolecular assembly in the gas phase driven by weak interactions. The interpretation of the measurements has been assisted by multilevel atomistic simulations, based on semi-empirical tight-binding and DFT-based methods. Our protocol established a positive-feedback loop between experimental and computational techniques, which has enabled a sound and detailed atomistic description of such complex heterogeneous molecular aggregates. Among biomolecules, uracil offers interesting and generalized skeletal features; its structure encompasses an alternation of hydrophilic H-bond donor and acceptor sites and hydrophobic moieties, typical in biomolecular systems, that induces a supramolecular core-shell-like organization of the mixed clusters with a water core and an uracil shell. This structure is far from typical models of both solid-state hydration, with water molecules in defined positions, or liquid solvation, where disconnected uracil molecules are completely surrounded by water.
Collapse
Affiliation(s)
- Giuseppe Mattioli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Paola Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192, Gif-sur-Yvette Cedex, France
| | - Mattea C Castrovilli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Jacopo Chiarinelli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Alicja Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | | | - Sylvain Maclot
- Physics Department, University of Gothenburg, Origovägen 6B, 41296 Göteborg, Sweden
| | | | - Chiara Nicolafrancesco
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192, Gif-sur-Yvette Cedex, France and Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Patrick Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| |
Collapse
|
5
|
Milovanović B, Novak J, Etinski M, Domcke W, Došlić N. Simulation of UV absorption spectra and relaxation dynamics of uracil and uracil-water clusters. Phys Chem Chem Phys 2021; 23:2594-2604. [PMID: 33475644 DOI: 10.1039/d0cp05618a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy with nonadiabatic dynamics simulations to identify the photophysical mechanisms that can give rise to experimentally observed decay time constants. We first compute and theoretically assign the electronic spectra of uracil using the second-order algebraic-diagrammatic-construction (ADC(2)) method. The obtained electronic states, their energy differences and state-specific solvation effects are the prerequisites for understanding the photodynamics. We then use nonadiabatic trajectory-surface-hopping dynamics simulations to investigate the photoinduced dynamics of uracil and uracil-water clusters. In contrast to previous studies, we found that a single mechanism - the ethylenic twist around the C[double bond, length as m-dash]C bond - is responsible for the ultrafast component of the nonradiative decay, both in the gas phase and in solution. Very good agreement with the experimentally determined ultrashort decay time constants is obtained.
Collapse
Affiliation(s)
| | - Jurica Novak
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia. and Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Mihajlo Etinski
- University of Belgrade, Faculty of Physical Chemistry, Belgrade, Serbia
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
6
|
Padroni G, Patwardhan NN, Schapira M, Hargrove AE. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med Chem 2020; 11:802-813. [PMID: 33479676 DOI: 10.1039/d0md00167h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
RNA molecules are becoming an important target class in drug discovery. However, the principles for designing RNA-binding small molecules are yet to be fully uncovered. In this study, we examined the Protein Data Bank (PDB) to highlight privileged interactions underlying small molecule-RNA recognition. By comparing this analysis with previously determined small molecule-protein interactions, we find that RNA recognition is driven mostly by stacking and hydrogen bonding interactions, while protein recognition is instead driven by hydrophobic effects. Furthermore, we analyze patterns of interactions to highlight potential strategies to tune RNA recognition, such as stacking and cation-π interactions that favor purine and guanine recognition, and note an unexpected paucity of backbone interactions, even for cationic ligands. Collectively, this work provides further understanding of RNA-small molecule interactions that may inform the design of small molecules targeting RNA.
Collapse
Affiliation(s)
- G Padroni
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - N N Patwardhan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - M Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - A E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| |
Collapse
|
7
|
Qin KS, Ichibha T, Hongo K, Maezono R. Inconsistencies in ab initio evaluations of non-additive contributions of DNA stacking energies. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ristić MM, Petković M, Milovanović B, Belić J, Etinski M. New hybrid cluster-continuum model for pKa values calculations: Case study of neurotransmitters’ amino group acidity. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Raman spectra of aqueous uracil stacked dimer: First principle molecular dynamics simulation. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Etinski M, Ensing B. Puzzle of the Intramolecular Hydrogen Bond of Dibenzoylmethane Resolved by Molecular Dynamics Simulations. J Phys Chem A 2018; 122:5945-5954. [DOI: 10.1021/acs.jpca.8b01930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11000 Belgrade, Serbia
| | - Bernd Ensing
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|