1
|
Mandal S, Ganesh KN, Maiti PK. Dynamics of terminal fraying-peeling and hydrogen bonds dictates the sequential vs. cooperative melting pathways of nanoscale DNA and PNA triplexes. NANOSCALE 2024; 16:13029-13040. [PMID: 38904319 DOI: 10.1039/d4nr01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral synthetic DNA/RNA analogues. In many aspects of biology and biotechnology, the details of DNA and PNA melting reaction coordinates are crucial, and their associative/dissociative details remain inadequately understood. In the current study, we have attempted to gain insights into comparative melting pathways and binding affinity of iso-sequences of an 18-mer PNA-DNA-PNA triplex and the analogous DNA-DNA-DNA triplex, and DNA-DNA and PNA-DNA duplexes. It is intriguing that while the DNA-DNA-DNA triplex melts in two sequential steps, the PNA-DNA-PNA triplex melts in a single step and the mechanistic aspects for this difference are still not clear. We report an all-atom molecular dynamics simulation of both complexes in the temperature range of 300 to 500 K with 20 K intervals. Based on the trajectory analysis, we provide evidence that the association and dissociation are dictated by the differences in fraying-peeling effects from either terminus to the center in a zipper pattern among the PNA-DNA-PNA triplex and DNA-DNA-DNA triplexes. These are shown to be governed by the different characteristics of H-bonding, RMSD, and Free Energy Landscape (FEL) as analyzed by PCA, leading to the DNA-DNA-DNA triplex exhibiting sequential melting, while the PNA-DNA-PNA triplex shows cooperative melting of the whole fragment in a single-step. The PNA-DNA-PNA triplex base pairs are thermodynamically more stable than the DNA-DNA-DNA triplex, with the binding affinity of PNA-TFO to the PNA : DNA duplex being higher than that of DNA-TFO to the DNA : DNA duplex. The investigation of the association/dissociation of PNA-TFO to the PNA-DNA duplex has relevance and importance in the emerging effective applications of oligonucleotide therapy.
Collapse
Affiliation(s)
- Sandip Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Krishna N Ganesh
- Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Tamez A, Nilsson L, Mihailescu MR, Evanseck JD. Parameterization of the miniPEG-Modified γPNA Backbone: Toward Induced γPNA Duplex Dissociation. J Chem Theory Comput 2023; 19:3346-3358. [PMID: 37195939 PMCID: PMC10269335 DOI: 10.1021/acs.jctc.2c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/19/2023]
Abstract
γ-Modified peptide nucleic acids (γPNAs) serve as potential therapeutic agents against genetic diseases. Miniature poly(ethylene glycol) (miniPEG) has been reported to increase solubility and binding affinity toward genetic targets, yet details of γPNA structure and dynamics are not understood. Within our work, we parameterized missing torsional and electrostatic terms for the miniPEG substituent on the γ-carbon atom of the γPNA backbone in the CHARMM force field. Microsecond timescale molecular dynamics simulations were carried out on six miniPEG-modified γPNA duplexes from NMR structures (PDB ID: 2KVJ). Three NMR models for the γPNA duplex (PDB ID: 2KVJ) were simulated as a reference for structural and dynamic changes captured for the miniPEG-modified γPNA duplex. Principal component analysis performed on the γPNA backbone atoms identified a single isotropic conformational substate (CS) for the NMR simulations, whereas four anisotropic CSs were identified for the ensemble of miniPEG-modified γPNA simulations. The NMR structures were found to have a 23° helical bend toward the major groove, consistent with our simulated CS structure of 19.0°. However, a significant difference between simulated methyl- and miniPEG-modified γPNAs involved the opportunistic invasion of miniPEG through the minor and major groves. Specifically, hydrogen bond fractional analysis showed that the invasion was particularly prone to affect the second G-C base pair, reducing the Watson-Crick base pair hydrogen bond by 60% over the six simulations, whereas the A-T base pairs decreased by only 20%. Ultimately, the invasion led to base stack reshuffling, where the well-ordered base stacking was reduced to segmented nucleobase stacking interactions. Our 6 μs timescale simulations indicate that duplex dissociation suggests the onset toward γPNA single strands, consistent with the experimental observation of decreased aggregation. To complement the insight of miniPEG-modified γPNA structure and dynamics, the new miniPEG force field parameters allow for further exploration of such modified γPNA single strands as potential therapeutic agents against genetic diseases.
Collapse
Affiliation(s)
- Angel Tamez
- Center
for Computational Sciences and the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Lennart Nilsson
- Department
of Biosciences and Nutrition, Karolinska
Institute, Solnavägen
1, 171 77 Solna, Sweden
| | - Mihaela-Rita Mihailescu
- Center
for Computational Sciences and the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jeffrey D. Evanseck
- Center
for Computational Sciences and the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
3
|
Goodman J, Attwood D, Kiely J, Coladas Mato P, Luxton R. Modeling Peptide Nucleic Acid Binding Enthalpies Using MM-GBSA. J Phys Chem B 2022; 126:9528-9538. [PMID: 36375178 PMCID: PMC9706560 DOI: 10.1021/acs.jpcb.2c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The binding enthalpies of peptide nucleic acid (PNA) homoduplexes were predicted using a molecular mechanics generalized Born surface area approach. Using the nucleic acid nearest-neighbor model, these were decomposed into sequence parameters which could replicate the enthalpies from thermal melting experiments with a mean error of 8.7%. These results present the first systematic computational investigation into the relationship between sequence and binding energy for PNA homoduplexes and identified a stabilizing helix initiation enthalpy not observed for nucleic acids with phosphoribose backbones.
Collapse
Affiliation(s)
- Jack Goodman
- University
of the West of England, BristolBS16 1QY, U.K.,
| | - David Attwood
- University
of the West of England, BristolBS16 1QY, U.K.
| | - Janice Kiely
- University
of the West of England, BristolBS16 1QY, U.K.
| | | | - Richard Luxton
- University
of the West of England, BristolBS16 1QY, U.K.
| |
Collapse
|
4
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [PMID: 35421892 DOI: 10.1039/d1nr04239d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral polyamide oligomers having extremely favorable thermal stability and high affinity to cell membranes when coupled with cationic cell-penetrating peptides (CPPs), as well as the encouraging antisense and antigene activity in cell-free systems. The study of the mechanical properties of short PNA molecules is rare both in experiments and theoretical calculations. Here, we studied the microscopic structures and elastic properties; namely, persistence length, stretch modulus, twist-stretch coupling, and structural crookedness of double-stranded PNA (dsPNA) and their hybrid derivatives using all-atom MD simulation and compared them with those of double-stranded DNA (dsDNA) and double-stranded RNA (dsRNA). The stretch modulus of the dsPNA is found to be ∼160 pN, an order of magnitude lower than that of dsDNA and smaller than dsRNA, respectively. Similarly, the persistence length of dsPNA is found to be ∼35 nm, significantly smaller than those of dsDNA and dsRNA. The PNA-DNA and PNA-RNA hybrid duplexes have elastic properties lying between that of dsPNA and dsDNA/dsRNA. We argue that the neutral backbones of the PNA make it less stiff than dsDNA and dsRNA molecules. Measurement of structural crookedness and principal component analysis additionally support the bending flexibility of dsPNA. Detailed analysis of the helical-rise coupled to helical-twist indicates that the PNA-DNA hybrid over-winds like dsDNA, while PNA-PNA and PNA-RNA unwind like dsRNA upon stretching. Because of the highly flexible nature of PNA, it can bind other biomolecules by adopting a wide range of conformations and is believed to be crucial for future nanobiotechnology research studies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [DOI: https:/doi.org/10.1039/d1nr04239d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Peptide nucleic acids are charge-neutral polyamide oligomers with extremely flexible backbones that have a strong affinity for hybridization with complementary DNA or RNA, as well as encouraging antisense and antigene activity in cell-free systems.
Collapse
Affiliation(s)
- Khadka B. Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Sarkar R, Jaiswar A, Hennelly SP, Onuchic JN, Sanbonmatsu KY, Roy S. Chelated Magnesium Logic Gate Regulates Riboswitch Pseudoknot Formation. J Phys Chem B 2021; 125:6479-6490. [PMID: 34106719 DOI: 10.1021/acs.jpcb.1c02467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnesium plays a critical role in the structure, dynamics, and function of RNA. The precise microscopic effect of chelated magnesium on RNA structure is yet to be explored. Magnesium is known to act through its diffuse cloud around RNA, through the outer sphere (water-mediated), inner sphere, and often chelated ion-mediated interactions. A mechanism is proposed for the role of experimentally discovered site-specific chelated magnesium ions on the conformational dynamics of SAM-I riboswitch aptamers in bacteria. This mechanism is observed with atomistic simulations performed in a physiological mixed salt environment at a high temperature. The simulations were validated with phosphorothioate interference mapping experiments that help to identify crucial inner-sphere Mg2+ sites prescribing an appropriate initial distribution of inner- and outer-sphere magnesium ions to maintain a physiological ion concentration of monovalent and divalent salts. A concerted role of two chelated magnesium ions is newly discovered since the presence of both supports the formation of the pseudoknot. This constitutes a logical AND gate. The absence of any of these magnesium ions instigates the dissociation of long-range pseudoknot interaction exposing the inner core of the RNA. A base triple is the epicenter of the magnesium chelation effect. It allosterically controls RNA pseudoknot by bolstering the direct effect of magnesium chelation in protecting the functional fold of RNA to control ON and OFF transcription switching.
Collapse
Affiliation(s)
- Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Akhilesh Jaiswar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Scott P Hennelly
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,New Mexico Consortium, Los Alamos, New Mexico 87544, United States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, Texas 77005, United States
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,New Mexico Consortium, Los Alamos, New Mexico 87544, United States
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
7
|
Valdiviezo J, Clever C, Beall E, Pearse A, Bae Y, Zhang P, Achim C, Beratan DN, Waldeck DH. Delocalization-Assisted Transport through Nucleic Acids in Molecular Junctions. Biochemistry 2021; 60:1368-1378. [PMID: 33870693 DOI: 10.1021/acs.biochem.1c00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The flow of charge through molecules is central to the function of supramolecular machines, and charge transport in nucleic acids is implicated in molecular signaling and DNA repair. We examine the transport of electrons through nucleic acids to understand the interplay of resonant and nonresonant charge carrier transport mechanisms. This study reports STM break junction measurements of peptide nucleic acids (PNAs) with a G-block structure and contrasts the findings with previous results for DNA duplexes. The conductance of G-block PNA duplexes is much higher than that of the corresponding DNA duplexes of the same sequence; however, they do not display the strong even-odd dependence conductance oscillations found in G-block DNA. Theoretical analysis finds that the conductance oscillation magnitude in PNA is suppressed because of the increased level of electronic coupling interaction between G-blocks in PNA and the stronger PNA-electrode interaction compared to that in DNA duplexes. The strong interactions in the G-block PNA duplexes produce molecular conductances as high as 3% G0, where G0 is the quantum of conductance, for 5 nm duplexes.
Collapse
Affiliation(s)
- Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Caleb Clever
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Edward Beall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Pearse
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yookyung Bae
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35:355-369. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.
Collapse
Affiliation(s)
- Christopher M Topham
- Molecular Forces Consulting, 24 Avenue Jacques Besse, 81500, Lavaur, France.
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| | - Jeremy C Smith
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| |
Collapse
|
9
|
Pieńko T, Czarnecki J, Równicki M, Wojciechowska M, Wierzba AJ, Gryko D, Bartosik D, Trylska J. Vitamin B 12-peptide nucleic acids use the BtuB receptor to pass through the Escherichia coli outer membrane. Biophys J 2021; 120:725-737. [PMID: 33453274 DOI: 10.1016/j.bpj.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Short modified oligonucleotides that bind in a sequence-specific way to messenger RNA essential for bacterial growth could be useful to fight bacterial infections. One such promising oligonucleotide is peptide nucleic acid (PNA), a synthetic DNA analog with a peptide-like backbone. However, the limitation precluding the use of oligonucleotides, including PNA, is that bacteria do not import them from the environment. We have shown that vitamin B12, which most bacteria need to take up for growth, delivers PNAs to Escherichia coli cells when covalently linked with PNAs. Vitamin B12 enters E. coli via a TonB-dependent transport system and is recognized by the outer-membrane vitamin B12-specific BtuB receptor. We engineered the E. coli ΔbtuB mutant and found that transport of the vitamin B12-PNA conjugate requires BtuB. Thus, the conjugate follows the same route through the outer membrane as taken by free vitamin B12. From enhanced sampling all-atom molecular dynamics simulations, we determined the mechanism of conjugate permeation through BtuB. BtuB is a β-barrel occluded by its luminal domain. The potential of mean force shows that conjugate passage is unidirectional and its movement into the BtuB β-barrel is energetically favorable upon luminal domain unfolding. Inside BtuB, PNA extends making its permeation mechanically feasible. BtuB extracellular loops are actively involved in transport through an induced-fit mechanism. We prove that the vitamin B12 transport system can be hijacked to enable PNA delivery to E. coli cells.
Collapse
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland.
| | - Jakub Czarnecki
- Faculty of Biology, University of Warsaw, Warsaw, Poland; Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
10
|
Moccia M, Mercurio FA, Langella E, Piacenti V, Leone M, Adamo MFA, Saviano M. Structural Insights on Tiny Peptide Nucleic Acid (PNA) Analogues of miRNA-34a: An in silico and Experimental Integrated Approach. Front Chem 2020; 8:568575. [PMID: 33330358 PMCID: PMC7719796 DOI: 10.3389/fchem.2020.568575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
In the present work, structural features of the interaction between peptide nucleic acid (PNA)-based analogs of the tumor-suppressor microRNA-34a with both its binding sites on MYCN mRNA were investigated. In particular, the region from base 1 to 8 ("seed" region) of miR-34a was reproduced in the form of an 8-mer PNA fragment (tiny PNA), and binding to target 3'UTR MYCN mRNA, was studied by a seldom reported and detailed NMR characterization, providing evidence for the formation of anti-parallel duplexes with a well-organized structural core. The formation of PNA-3'UTR duplexes was also confirmed by Circular Dichroism, and their melting curves were measured by UV spectroscopy. Nevertheless, this study offered a valuable comparison between molecular dynamics predictions and experimental evidence, which showed great correlation. Preliminary uptake assays were carried out in Neuroblastoma Kelly cells, using short peptide conjugates as carriers and FITC fluorescent tag for subcellular localization. Moderate internalization was observed without the use of transfecting agents. The reported results corroborate the interest toward the design and development of chimeric PNA/RNA sequences as effective RNA-targeting agents.
Collapse
Affiliation(s)
- Maria Moccia
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Bari, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Valerio Piacenti
- Royal College of Surgeons in Ireland, Department of Pharmaceutical and Medicinal Chemistry, Dublin, Ireland
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Mauro F. A. Adamo
- Royal College of Surgeons in Ireland, Department of Pharmaceutical and Medicinal Chemistry, Dublin, Ireland
| | - Michele Saviano
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Bari, Italy
| |
Collapse
|
11
|
Gamble Jarvi A, Sargun A, Bogetti X, Wang J, Achim C, Saxena S. Development of Cu 2+-Based Distance Methods and Force Field Parameters for the Determination of PNA Conformations and Dynamics by EPR and MD Simulations. J Phys Chem B 2020; 124:7544-7556. [PMID: 32790374 DOI: 10.1021/acs.jpcb.0c05509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acids (PNAs) are a promising group of synthetic analogues of DNA and RNA that offer several distinct advantages over the naturally occurring nucleic acids for applications in biosensing, drug delivery, and nanoelectronics. Because of its structural differences from DNA/RNA, methods to analyze and assess the structure, conformations, and dynamics are needed. In this work, we develop synergistic techniques for the study of the PNA conformation. We use CuQ2, a Cu2+ complex with 8-hydroxyquinoline (HQ), as an alternative base pair and as a spin label in electron paramagnetic resonance (EPR) distance methods. We use molecular dynamics (MD) simulations with newly developed force field parameters for the spin labels to interpret the distance constraints determined by EPR. We complement these methods by UV-vis and circular dichroism measurements and assess the efficacy of the Cu2+ label on a PNA duplex whose backbone is based on aminoethylglycine and a duplex with a hydroxymethyl backbone modification. We show that the Cu2+ label functions efficiently within the standard PNA and the hydroxymethyl-modified PNA and that the MD parameters may be used to accurately reproduce our EPR findings. Through the combination of EPR and MD, we gain new insights into the PNA structure and conformations as well as into the mechanism of orientational selectivity in Cu2+ EPR at X-band. These results present for the first time a rigid Cu2+ spin label used for EPR distance measurements in PNA and the accompanying MD force fields for the spin label. Our studies also reveal that the spin labels have a low impact on the structure of the PNA duplexes. The combined MD and EPR approach represents an important new tool for the characterization of the PNA duplex structure and provides valuable information to aid in the rational application of PNA at large.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Artur Sargun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules 2020; 25:molecules25030559. [PMID: 32012929 PMCID: PMC7038079 DOI: 10.3390/molecules25030559] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.
Collapse
|
13
|
Jing Z, Qi R, Thibonnier M, Ren P. Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides. J Chem Theory Comput 2019; 15:6422-6432. [PMID: 31553600 PMCID: PMC6889957 DOI: 10.1021/acs.jctc.9b00519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are attractive drug candidates for many diseases as they can modulate the expression of gene networks. Recently, we discovered that DNAs targeting microRNA-22-3p (miR-22-3p) hold the potential for treating obesity and related metabolic disorders (type 2 diabetes mellitus, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)) by turning fat-storing white adipocytes into fat-burning adipocytes. In this work, we explored the effects of chemical modifications, including phosphorothioate (PS), locked nucleic acid (LNA), and peptide nucleic acid (PNA), on the structure and energy of DNA analogs by using molecular dynamics (MD) simulations. To achieve a reliable prediction of the hybridization free energy, the AMOEBA polarizable force field and the free energy perturbation technique were employed. The calculated hybridization free energies are generally compatible with previous experiments. For LNA and PNA, the enhanced duplex stability can be explained by the preorganization mechanism, i.e., the single strands adopt stable helical structures similar to those in the duplex. For PS, the S and R isomers (Sp and Rp) have preferences for C2'-endo and C3'-endo sugar puckering conformations, respectively, and therefore Sp is less stable than Rp in DNA/RNA hybrids. In addition, the solvation penalty of Rp accounts for its destabilization effect. PS-LNA is similar to LNA as the sugar puckering is dominated by the locked sugar ring. This work demonstrated that MD simulations with polarizable force fields are useful for the understanding and design of modified nucleic acids.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | | | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
14
|
Jasiński M, Miszkiewicz J, Feig M, Trylska J. Thermal Stability of Peptide Nucleic Acid Complexes. J Phys Chem B 2019; 123:8168-8177. [PMID: 31491077 DOI: 10.1021/acs.jpcb.9b05168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptide nucleic acid (PNA) is a neutral nucleic acid analogue that base pairs with itself and natural nucleic acids. PNA-nucleic acid complexes are more thermally stable than the corresponding complexes of natural nucleic acids. In addition, PNA is biostable and thus used in many antisense and antigene applications to block functional RNA or DNA via sequence-specific interactions. We have recently developed force field parameters for molecular dynamics (MD) simulations of PNA and PNA-involving duplexes with natural nucleic acids. In this work, we provide the first application of this force field to biologically relevant PNA sequences and their complexes with RNA. We investigated thermal stabilities of short PNA-PNA, PNA-RNA, and RNA-RNA duplexes using UV-monitored thermal denaturation experiments and MD simulations at ambient and elevated temperatures. The simulations show a two-state melting transition and reproduce the thermal stability from melting experiments, with PNA-PNA being the most and RNA-RNA the least stable. The PNA-PNA duplex also displays the highest activation energy for melting. The atomistic details of unfolding of PNA duplexes suggest that all PNA-PNA bases melt concomitantly, whereas the RNA-RNA and PNA-RNA are destabilized from the termini toward the central part of the duplexes.
Collapse
Affiliation(s)
| | | | - Michael Feig
- Department of Biochemistry and Molecular Biology , Michigan State University , 603 Wilson Road , East Lansing , Michigan 48824 , United States
| | | |
Collapse
|