1
|
Procacci P, Guarnieri G. SAMPL9 blind predictions using nonequilibrium alchemical approaches. J Chem Phys 2022; 156:164104. [PMID: 35490003 DOI: 10.1063/5.0086640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present our blind predictions for the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL), ninth challenge, focusing on the binding of WP6 (carboxy-pillar[6]arene) with ammonium/diammonium cationic guests. Host-guest binding free energies have been calculated using the recently developed virtual double system single box approach, based on the enhanced sampling of the bound and unbound end-states followed by fast switching nonequilibrium alchemical simulations [M. Macchiagodena et al., J. Chem. Theory Comput. 16, 7160 (2020)]. As far as Pearson and Kendall coefficients are concerned, performances were acceptable and, in general, better than those we submitted for calixarenes, cucurbituril-like open cavitand, and beta-cyclodextrines in previous SAMPL host-guest challenges, confirming the reliability of nonequilibrium approaches for absolute binding free energy calculations. In comparison with previous submissions, we found a rather large mean signed error that we attribute to the way the finite charge correction was addressed through the assumption of a neutralizing background plasma.
Collapse
Affiliation(s)
- Piero Procacci
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Guido Guarnieri
- ENEA, Portici Research Centre, DTE-ICT-HPC, P.le E. Fermi, 1, I-80055 Portici, NA, Italy
| |
Collapse
|
2
|
Procacci P, Macchiagodena M. On the NS-DSSB unidirectional estimates in the SAMPL6 SAMPLing challenge. J Comput Aided Mol Des 2021; 35:1055-1065. [PMID: 34625885 PMCID: PMC8523005 DOI: 10.1007/s10822-021-00419-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/27/2021] [Indexed: 12/03/2022]
Abstract
In the context of the recent SAMPL6 SAMPLing challenge (Rizzi et al. 2020 in J Comput Aided Mol Des 34:601–633) aimed at assessing convergence properties and reproducibility of molecular dynamics binding free energy methodologies, we propose a simple explanation of the severe errors observed in the nonequilibrium switch double-system-single-box (NS-DSSB) approach when using unidirectional estimates. At the same time, we suggest a straightforward and minimal modification of the NS-DSSB protocol for obtaining reliable unidirectional estimates for the process where the ligand is decoupled in the bound state and recoupled in the bulk.
Collapse
Affiliation(s)
- Piero Procacci
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, 50019, Sesto Fiorentino, FI, Italy.
| | - Marina Macchiagodena
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
3
|
Procacci P, Guarnieri G. SAMPL7 blind predictions using nonequilibrium alchemical approaches. J Comput Aided Mol Des 2021; 35:37-47. [PMID: 33392950 DOI: 10.1007/s10822-020-00365-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
In the context of the SAMPL7 challenge, we computed, employing a non-equilibrium (NE) alchemical technique, the standard binding free energy of two series of host-guest systems, involving as a host the Isaac's TrimerTrip, a Cucurbituril-like open cavitand, and the Gilson's Cyclodextrin derivatives. The adopted NE alchemy combines enhanced sampling molecular dynamics simulations with driven fast out-of-equilibrium alchemical trajectories to recover the free energy via the Jarzynski and Crooks NE theorems. The GAFF2 non-polarizable force field was used for the parametrization. Performances were acceptable and similar in accuracy to those we submitted for Gibb's Deep Cavity Cavitands in the previous SAMPL6 host-guest challenge, confirming the reliability of the computational approach and exposing, in some cases, some important deficiencies of the GAFF2 non-polarizable force field.
Collapse
Affiliation(s)
- Piero Procacci
- University of Florence, Department of Chemistry, Via Lastruccia n. 3, 50019, Sesto Fiorentino, FI, Italy.
| | - Guido Guarnieri
- ENEA, Portici Research Centre, DTE-ICT-HPC, P.le E. Fermi, 1, 80055, Portici, NA, Italy
| |
Collapse
|
4
|
Procacci P. Methodological uncertainties in drug-receptor binding free energy predictions based on classical molecular dynamics. Curr Opin Struct Biol 2020; 67:127-134. [PMID: 33220532 DOI: 10.1016/j.sbi.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Abstract
Computational approaches are becoming an essential tool in modern drug design and discovery, with fast compound triaging using a combination of machine learning and docking techniques followed by molecular dynamics binding free energies assessment using alchemical techniques. The traditional MD-based alchemical free energy perturbation (FEP) method faces severe sampling issues that may limits its reliability in automated workflows. Here we review the major sources of uncertainty in FEP protocols for drug discovery, showing how the sampling problem can be effectively tackled by switching to nonequilibrium alchemical techniques.
Collapse
Affiliation(s)
- Piero Procacci
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, dVia della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Macchiagodena M, Pagliai M, Karrenbrock M, Guarnieri G, Iannone F, Procacci P. Virtual Double-System Single-Box: A Nonequilibrium Alchemical Technique for Absolute Binding Free Energy Calculations: Application to Ligands of the SARS-CoV-2 Main Protease. J Chem Theory Comput 2020; 16:7160-7172. [PMID: 33090785 PMCID: PMC8015232 DOI: 10.1021/acs.jctc.0c00634] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the context of drug-receptor binding affinity calculations using molecular dynamics techniques, we implemented a combination of Hamiltonian replica exchange (HREM) and a novel nonequilibrium alchemical methodology, called virtual double-system single-box, with increased accuracy, precision, and efficiency with respect to the standard nonequilibrium approaches. The method has been applied for the determination of absolute binding free energies of 16 newly designed noncovalent ligands of the main protease (3CLpro) of SARS-CoV-2. The core structures of 3CLpro ligands were previously identified using a multimodal structure-based ligand design in combination with docking techniques. The calculated binding free energies for four additional ligands with known activity (either for SARS-CoV or SARS-CoV-2 main protease) are also reported. The nature of binding in the 3CLpro active site and the involved residues besides the CYS-HYS catalytic dyad have been thoroughly characterized by enhanced sampling simulations of the bound state. We have identified several noncongeneric compounds with predicted low micromolar activity for 3CLpro inhibition, which may constitute possible lead compounds for the development of antiviral agents in Covid-19 treatment.
Collapse
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Maurice Karrenbrock
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Guido Guarnieri
- ENEA, Portici Research Centre, DTE-ICT-HPC P.le E. Fermi, 1, I-80055 Portici (NA), Italy
| | - Francesco Iannone
- ENEA, Portici Research Centre, DTE-ICT-HPC P.le E. Fermi, 1, I-80055 Portici (NA), Italy
| | - Piero Procacci
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Procacci P, Macchiagodena M, Pagliai M, Guarnieri G, Iannone F. Interaction of hydroxychloroquine with SARS-CoV2 functional proteins using all-atoms non-equilibrium alchemical simulations. Chem Commun (Camb) 2020; 56:8854-8856. [PMID: 32633733 DOI: 10.1039/d0cc03558k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using a combination of enhanced sampling molecular dynamics techniques and non-equilibrium alchemical transformations with full atomistic details, we have shown that hydroxychloroquine (HCQ) may act as a mild inhibitor of important functional proteins for SARS-CoV2 replication, with potency increasing in the series PLpro, 3CLpro, RdRp. By analyzing the bound state configurations, we were able to improve the potency for the 3CLpro target, designing a novel HCQ-inspired compound, named PMP329, with predicted nanomolar activity. If confirmed in vitro, our results provide a molecular rationale for the use of HCQ or of strictly related derivatives in the treatment of Covid-19.
Collapse
Affiliation(s)
- Piero Procacci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino (FI), I-50019, Italy.
| | - Marina Macchiagodena
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino (FI), I-50019, Italy.
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino (FI), I-50019, Italy.
| | - Guido Guarnieri
- ENEA, Portici Research Centre, DTE-ICT-HPC P.le E. Fermi, 1, Portici (NA), I-80055, Italy.
| | - Francesco Iannone
- ENEA, Portici Research Centre, DTE-ICT-HPC P.le E. Fermi, 1, Portici (NA), I-80055, Italy.
| |
Collapse
|
7
|
Procacci P. A remark on the efficiency of the double-system/single-box nonequilibrium approach in the SAMPL6 SAMPLing challenge. J Comput Aided Mol Des 2020; 34:635-639. [PMID: 32277315 DOI: 10.1007/s10822-020-00312-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
Abstract
The alchemical nonequilibrium switching technique was one of several methods in the top tier of performance in the recent SAMPL6 SAMPLing challenge in both accuracy and efficiency. In this paper, in the context of nonequilibrium alchemical switching, we compare the efficiency of the double-system/single-box (DSSB) approach (used in the SAMPL6 challenges) to the standard single-system/double-box method (SSDB). Exploiting the Crooks theorem in a simple but effective test case, we analytically show that the DSSB approach is almost twice as efficient as SSDB for slow near-equilibrium switching but it gives basically no gain over the conventional SSDB approach when the variance of the work distribution exceeds few [Formula: see text], with the potential of producing artifacts and entanglements if not judiciously implemented.
Collapse
Affiliation(s)
- Piero Procacci
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
8
|
Procacci P, Guarnieri G. SAMPL6 blind predictions of water-octanol partition coefficients using nonequilibrium alchemical approaches. J Comput Aided Mol Des 2019; 34:371-384. [PMID: 31624982 DOI: 10.1007/s10822-019-00233-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
In this paper, we compute, by means of a non equilibrium alchemical technique, the water-octanol partition coefficients (LogP) for a series of drug-like compounds in the context of the SAMPL6 challenge initiative. Our blind predictions are based on three of the most popular non-polarizable force fields, CGenFF, GAFF2, and OPLS-AA and are critically compared to other MD-based predictions produced using free energy perturbation or thermodynamic integration approaches with stratification. The proposed non-equilibrium method emerges has a reliable tool for LogP prediction, systematically being among the top performing submissions in all force field classes for at least two among the various indicators such as the Pearson or the Kendall correlation coefficients or the mean unsigned error. Contrarily to the widespread equilibrium approaches, that yielded apparently very disparate results in the SAMPL6 challenge, all our independent prediction sets, irrespective of the adopted force field and of the adopted estimate (unidirectional or bidirectional) are, mutually, from moderately to strongly correlated.
Collapse
Affiliation(s)
- Piero Procacci
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, 50019, Sesto Fiorentino, FI, Italy.
| | - Guido Guarnieri
- ENEA, Portici Research Centre, DTE-ICT-HPC, P.le E. Fermi, 1, 80055, Portici, NA, Italy
| |
Collapse
|
9
|
Procacci P. Accuracy, precision, and efficiency of nonequilibrium alchemical methods for computing free energies of solvation. I. Bidirectional approaches. J Chem Phys 2019; 151:144113. [DOI: 10.1063/1.5120615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Piero Procacci
- Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Procacci P. Precision and computational efficiency of nonequilibrium alchemical methods for computing free energies of solvation. II. Unidirectional estimates. J Chem Phys 2019; 151:144115. [DOI: 10.1063/1.5120616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Piero Procacci
- Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Procacci P. Solvation free energies via alchemical simulations: let's get honest about sampling, once more. Phys Chem Chem Phys 2019; 21:13826-13834. [PMID: 31211310 DOI: 10.1039/c9cp02808k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Free energy perturbation (FEP) approaches with stratification have seen widespread and increasing use in computational studies of biologically relevant molecules. However, when the molecular systems are characterized by a complex conformational free energy landscape, the assessment of convergence remains a concern for many practitioners. The sampling problem in FEP has been authoritatively addressed in a recent perspective paper [D. Mobley, J. Comput.-Aided Mol. Des., 2012, 26, 93], incisively entitled "Let's get honest about sampling". Here, I return to the issue of sampling in the determination of the octanol-water partition coefficient for a synthetic precursor of kinase inhibitors that has been included in the recent extension of the SAMPL6 blind challenge of log P coefficients. I will show that even for this simple compound, whose conformational space is essentially dictated by two sp3 rotable bonds connecting rigid planar units, canonical sampling using standard techniques can be surprisingly hard to achieve. I will also show how the conformational sampling problem can be effectively bypassed using unidirectional and bidirectional nonequilibrium work methods, reliably recovering the solvation energy with minimal methodological uncertainty.
Collapse
|
12
|
Vassetti D, Pagliai M, Procacci P. Assessment of GAFF2 and OPLS-AA General Force Fields in Combination with the Water Models TIP3P, SPCE, and OPC3 for the Solvation Free Energy of Druglike Organic Molecules. J Chem Theory Comput 2019; 15:1983-1995. [DOI: 10.1021/acs.jctc.8b01039] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dario Vassetti
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, Sesto Fiorentino, I-50019 Italy
| | - Marco Pagliai
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, Sesto Fiorentino, I-50019 Italy
| | - Piero Procacci
- Department of Chemistry, University of Florence, Via Lastruccia n. 3, Sesto Fiorentino, I-50019 Italy
| |
Collapse
|