1
|
Giarrusso S, Gori-Giorgi P, Agostini F. Electronic Vector Potential from the Exact Factorization of a Complex Wavefunction. Chemphyschem 2024; 25:e202400127. [PMID: 38837609 DOI: 10.1002/cphc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
We generalize the definitions of local scalar potentials namedυ kin ${\upsilon _{{\rm{kin}}} }$ andυ N - 1 ${\upsilon _{N - 1} }$ , which are relevant to properly describe phenomena such as molecular dissociation with density-functional theory, to the case in which the electronic wavefunction corresponds to a complex current-carrying state. In such a case, an extra term in the form of a vector potential appears which cannot be gauged away. Both scalar and vector potentials are introduced via the exact factorization formalism which allows us to express the given Schrödinger equation as two coupled equations, one for the marginal and one for the conditional amplitude. The electronic vector potential is directly related to the paramagnetic current density carried by the total wavefunction and to the diamagnetic current density in the equation for the marginal amplitude. An explicit example of this vector potential in a triplet state of two non-interacting electrons is showcased together with its associated circulation, giving rise to a non-vanishing geometric phase. Some connections with the exact factorization for the full molecular wavefunction beyond the Born-Oppenheimer approximation are also discussed.
Collapse
Affiliation(s)
- Sara Giarrusso
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV, Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ, Schiphol, The Netherlands
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
2
|
Giarrusso S, Pribram-Jones A. Møller-Plesset and Density-Fixed Adiabatic Connections for a Model Diatomic System at Different Correlation Regimes. J Chem Theory Comput 2023; 19:5835-5850. [PMID: 37642270 DOI: 10.1021/acs.jctc.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In recent years, adiabatic connection (AC) interpolations developed within density functional theory (DFT) have been found to provide good performances in the calculation of interaction energies when used with Hartree-Fock (HF) ingredients. The physical and mathematical reasons for such unanticipated performance have been clarified, to some extent, by studying the strong-interaction limit of the Møller-Plesset (MP) AC. In this work, we calculate both the MP and the DFT AC integrand for the asymmetric Hubbard dimer, which allows for a systematic investigation of different correlation regimes by varying two simple parameters in the Hamiltonian: the external potential, Δv, and the interaction strength, U. Notably, we find that, while the DFT AC integrand appears to be convex in the full parameter space, the MP integrand may change curvature twice. Furthermore, we discuss different aspects of the second-order expansion of the correlation energy in each AC, and we demonstrate why the derivative of the λ-dependent density in the MP AC at λ = 0 (i.e., at the HF density) is zero in the model. Concerning the strong-interaction limit of both ACs in the Hubbard dimer setting, we show that the asymptotic value of the MP AC, W∞HF, is lower than (or equal to) its DFT analogue, W∞KS, if the two are compared at a given density, just like in real space. However, we also show that this is not always the case if the two quantities are compared at a given external potential.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| |
Collapse
|
3
|
Giarrusso S, Neugarten R, Baerends EJ, Giesbertz KJH. Secondary Kinetic Peak in the Kohn-Sham Potential and Its Connection to the Response Step. J Chem Theory Comput 2022; 18:4762-4773. [PMID: 35895974 DOI: 10.1021/acs.jctc.2c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider a prototypical 1D model Hamiltonian for a stretched heteronuclear molecule and construct individual components of the corresponding KS potential, namely, the kinetic, the N - 1, and the conditional potentials. These components show very special features, such as peaks and steps, in regions where the density is drastically low. Some of these features are quite well-known, whereas others, such as a secondary peak in the kinetic potential or a second bump in the conditional potential, are less or not known at all. We discuss these features building on the analytical model treated in Giarrusso et al. J. Chem. Theory Comput. 2018, 14, 4151. In particular, we provide an explanation for the underlying mechanism which determines the appearance of both peaks in the kinetic potential and elucidate why these peaks delineate the region over which the plateau structure, due to the N - 1 potential, stretches. We assess the validity of the Heitler-London Ansatz at large but finite internuclear distance, showing that, if optimal orbitals are used, this model is an excellent approximation to the exact wave function. Notably, we find that the second natural orbital presents an extra node very far out on the side of the more electronegative atom.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Roeland Neugarten
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Evert Jan Baerends
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Klaas J H Giesbertz
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Baerends EJ. Chemical potential, derivative discontinuity, fractional electrons, jump of the Kohn-Sham potential, atoms as thermodynamic open systems, and other (mis)conceptions of the density functional theory of electrons in molecules. Phys Chem Chem Phys 2022; 24:12745-12766. [PMID: 35593143 DOI: 10.1039/d2cp01585d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many references exist in the density functional theory (DFT) literature to the chemical potential of the electrons in an atom or a molecule. The origin of this notion has been the identification of the Lagrange multiplier μ = ∂E/∂N in the Euler-Lagrange variational equation for the ground state density as the chemical potential of the electrons. We first discuss why the Lagrange multiplier in this case is an arbitrary constant and therefore cannot be a physical characteristic of an atom or molecule. The switching of the energy derivative ("chemical potential") from -I to -A when the electron number crosses the integer, called integer discontinuity or derivative discontinuity, is not physical but only occurs when the nonphysical noninteger electron systems and the corresponding energy and derivative ∂E/∂N are chosen in a specific discontinuous way. The question is discussed whether in fact the thermodynamical concept of a chemical potential can be defined for the electrons in such few-electron systems as atoms and molecules. The conclusion is that such systems lack important characteristics of thermodynamic systems and do not afford the definition of a chemical potential. They also cannot be considered as analogues of the open systems of thermodynamics that can exchange particles with an environment (a particle bath or other members of a Gibbsian ensemble). Thermodynamical (statistical mechanical) concepts like chemical potential, open systems, grand canonical ensemble etc. are not applicable to a few electron system like an atom or molecule. A number of topics in DFT are critically reviewed in light of these findings: jumps in the Kohn-Sham potential when crossing an integer number of electrons, the band gap problem, the deviation-from-straight-lines error, and the role of ensembles in DFT.
Collapse
|
5
|
Maitra NT. Double and Charge-Transfer Excitations in Time-Dependent Density Functional Theory. Annu Rev Phys Chem 2021; 73:117-140. [PMID: 34910562 DOI: 10.1146/annurev-physchem-082720-124933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Time-dependent density functional theory has emerged as a method of choice for calculations of spectra and response properties in physics, chemistry, and biology, with its system-size scaling enabling computations on systems much larger than otherwise possible. While increasingly complex and interesting systems have been successfully tackled with relatively simple functional approximations, there has also been increasing awareness that these functionals tend to fail for certain classes of approximations. Here I review the fundamental challenges the approximate functionals have in describing double excitations and charge-transfer excitations, which are two of the most common impediments for the theory to be applied in a black-box way. At the same time, I describe the progress made in recent decades in developing functional approximations that give useful predictions for these excitations. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Neepa T Maitra
- Department of Physics, Rutgers University at Newark, Newark, New Jersey, USA;
| |
Collapse
|
6
|
Abstract
Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme's D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.
Collapse
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Stefan Vuckovic
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
McCarty RJ, Perchak D, Pederson R, Evans R, Qiu Y, White SR, Burke K. Bypassing the Energy Functional in Density Functional Theory: Direct Calculation of Electronic Energies from Conditional Probability Densities. PHYSICAL REVIEW LETTERS 2020; 125:266401. [PMID: 33449722 DOI: 10.1103/physrevlett.125.266401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Density functional calculations can fail for want of an accurate exchange-correlation approximation. The energy can instead be extracted from a sequence of density functional calculations of conditional probabilities (CP DFT). Simple CP approximations yield usefully accurate results for two-electron ions, the hydrogen dimer, and the uniform gas at all temperatures. CP DFT has no self-interaction error for one electron, and correctly dissociates H_{2}, both major challenges. For warm dense matter, classical CP DFT calculations can overcome the convergence problems of Kohn-Sham DFT.
Collapse
Affiliation(s)
- Ryan J McCarty
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Dennis Perchak
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ryan Pederson
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Robert Evans
- H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Yiheng Qiu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Steven R White
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
8
|
Giarrusso S, Gori-Giorgi P. Exchange-Correlation Energy Densities and Response Potentials: Connection between Two Definitions and Analytical Model for the Strong-Coupling Limit of a Stretched Bond. J Phys Chem A 2020; 124:2473-2482. [PMID: 32118422 PMCID: PMC7104238 DOI: 10.1021/acs.jpca.9b10538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
analyze in depth two widely used definitions (from the theory
of conditional probability amplitudes and from the adiabatic connection
formalism) of the exchange-correlation energy density and of the response
potential of Kohn–Sham density functional theory. We introduce
a local form of the coupling-constant-dependent Hohenberg–Kohn functional, showing that
the difference between the two definitions is due to a corresponding
local first-order term in the coupling constant, which disappears
globally (when integrated over all space), but not locally. We also
design an analytic representation for the response potential in the
strong-coupling limit of density functional theory for a model single
stretched bond.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| |
Collapse
|
9
|
Kraisler E. Asymptotic Behavior of the Exchange‐Correlation Energy Density and the Kohn‐Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. Isr J Chem 2020. [DOI: 10.1002/ijch.201900103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry The Hebrew University of Jerusalem 9091401 Jerusalem Israel
| |
Collapse
|
10
|
Gerolin A, Grossi J, Gori-Giorgi P. Kinetic Correlation Functionals from the Entropic Regularization of the Strictly Correlated Electrons Problem. J Chem Theory Comput 2020; 16:488-498. [PMID: 31855421 PMCID: PMC6964418 DOI: 10.1021/acs.jctc.9b01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 11/29/2022]
Abstract
In this work, we study the entropic regularization of the strictly correlated electrons formalism, discussing the implications for density functional theory and establishing a link with earlier works on quantum kinetic energy and classical entropy. We carry out a very preliminary investigation (using simplified models) on the use of the solution of the entropic regularized problem to build approximations for the kinetic correlation functional at large coupling strengths. We also analyze lower and upper bounds to the Hohenberg-Kohn functional using the entropic regularized strictly correlated electrons problem.
Collapse
Affiliation(s)
- Augusto Gerolin
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Juri Grossi
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gould T, Vuckovic S. Range-separation and the multiple radii functional approximation inspired by the strongly interacting limit of density functional theory. J Chem Phys 2019; 151:184101. [DOI: 10.1063/1.5125692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia
| | - Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Vuckovic S. Density Functionals from the Multiple-Radii Approach: Analysis and Recovery of the Kinetic Correlation Energy. J Chem Theory Comput 2019; 15:3580-3590. [DOI: 10.1021/acs.jctc.9b00129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
13
|
Unified construction of Fermi, Pauli and exchange-correlation potentials. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
14
|
Seidl M, Giarrusso S, Vuckovic S, Fabiano E, Gori-Giorgi P. Communication: Strong-interaction limit of an adiabatic connection in Hartree-Fock theory. J Chem Phys 2018; 149:241101. [DOI: 10.1063/1.5078565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Seidl
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|