1
|
Sukurma Z, Schlipf M, Kresse G. Self-Refinement of Auxiliary-Field Quantum Monte Carlo via Non-Orthogonal Configuration Interaction. J Chem Theory Comput 2025. [PMID: 40294435 DOI: 10.1021/acs.jctc.5c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
For optimal accuracy, auxiliary-field quantum Monte Carlo (AFQMC) requires trial states consisting of multiple Slater determinants. We develop an efficient algorithm to select the determinants from an AFQMC random walk eliminating the need for other methods. When determinants contribute significantly to the nonorthogonal configuration interaction energy, we include them in the trial state. These refined trial wave functions significantly reduce the phaseless bias and sampling variance of the local energy estimator. With 100 to 200 determinants, we lower the error of AFQMC by up to a factor of 10 for second-row elements that are not accurately described with a Hartree-Fock trial wave function. For the HEAT set, we improve the average error to within chemical accuracy. For benzene, the largest studied system, we reduce AFQMC error by 80% with 214 Slater determinants and find a 10-fold increase of the time to solution. We show that phaseless errors prevail in systems with static correlation or strong spin contamination. For such systems, improved trial states enable stable free-projection AFQMC calculations, achieving chemical accuracy even in the strongly correlated regime.
Collapse
Affiliation(s)
- Zoran Sukurma
- University of Vienna, Faculty of Physics, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Martin Schlipf
- VASP Software GmbH, Berggasse 21/14, 1090 Vienna, Austria
| | - Georg Kresse
- University of Vienna, Faculty of Physics, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP Software GmbH, Berggasse 21/14, 1090 Vienna, Austria
| |
Collapse
|
2
|
Mahajan A, Thorpe JH, Kurian JS, Reichman DR, Matthews DA, Sharma S. Beyond CCSD(T) Accuracy at Lower Scaling with Auxiliary Field Quantum Monte Carlo. J Chem Theory Comput 2025; 21:1626-1642. [PMID: 39907123 DOI: 10.1021/acs.jctc.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We introduce a black-box auxiliary field quantum Monte Carlo (AFQMC) approach to perform highly accurate electronic structure calculations using configuration interaction singles and doubles (CISD) trial states. This method consistently provides more accurate energy estimates than coupled cluster singles and doubles with perturbative triples (CCSD(T)), often regarded as the gold standard in quantum chemistry. This level of precision is achieved at a lower asymptotic computational cost, scaling as O(N6) compared to the O(N7) scaling of CCSD(T). We provide numerical evidence supporting these findings through results for challenging main group and transition metal-containing molecules.
Collapse
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - James H Thorpe
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Jo S Kurian
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
3
|
Motta M, Sung KJ, Shee J. Quantum Algorithms for the Variational Optimization of Correlated Electronic States with Stochastic Reconfiguration and the Linear Method. J Phys Chem A 2024; 128:8762-8776. [PMID: 39348598 DOI: 10.1021/acs.jpca.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Solving the electronic Schrodinger equation for strongly correlated ground states is a long-standing challenge. We present quantum algorithms for the variational optimization of wave functions correlated by products of unitary operators, such as Local Unitary Cluster Jastrow (LUCJ) ansatzes, using stochastic reconfiguration (SR) and the linear method (LM). While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is polynomial in system size. We find that classical simulations of optimization with the linear method consistently find lower energy solutions than with the L-BFGS-B optimizer across the dissociation curves of the notoriously difficult N2 and C2 dimers; LUCJ predictions of the ground-state energies deviate from exact diagonalization by 1 kcal/mol or less at all points on the potential energy curve. While we do characterize the effect of shot noise on the LM optimization, these noiseless results highlight the critical but often overlooked role that optimization techniques must play in attacking the electronic structure problem (on both classical and quantum hardware), for which even mean-field optimization is formally NP hard. We also discuss the challenge of obtaining smooth curves in these strongly correlated regimes, and propose a number of quantum-friendly solutions ranging from symmetry-projected ansatz forms to a symmetry-constrained optimization algorithm.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Kevin J Sung
- IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Pokhilko P, Yeh CN, Morales MA, Zgid D. Tensor hypercontraction for fully self-consistent imaginary-time GF2 and GWSOX methods: Theory, implementation, and role of the Green's function second-order exchange for intermolecular interactions. J Chem Phys 2024; 161:084108. [PMID: 39185845 DOI: 10.1063/5.0215954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
We present an efficient MPI-parallel algorithm and its implementation for evaluating the self-consistent correlated second-order exchange term (SOX), which is employed as a correction to the fully self-consistent GW scheme called scGWSOX (GW plus the SOX term iterated to achieve full Green's function self-consistency). Due to the application of the tensor hypercontraction (THC) in our computational procedure, the scaling of the evaluation of scGWSOX is reduced from O(nτnAO5) to O(nτN2nAO2). This fully MPI-parallel and THC-adapted approach enabled us to conduct the largest fully self-consistent scGWSOX calculations with over 1100 atomic orbitals with only negligible errors attributed to THC fitting. Utilizing our THC implementation for scGW, scGF2, and scGWSOX, we evaluated energies of intermolecular interactions. This approach allowed us to circumvent issues related to reference dependence and ambiguity in energy evaluation, which are common challenges in non-self-consistent calculations. We demonstrate that scGW exhibits a slight overbinding tendency for large systems, contrary to the underbinding observed with non-self-consistent RPA. Conversely, scGWSOX exhibits a slight underbinding tendency for such systems. This behavior is both physical and systematic and is caused by exclusion-principle violating diagrams or corresponding corrections. Our analysis elucidates the role played by these different diagrams, which is crucial for the construction of rigorous, accurate, and systematic methods. Finally, we explicitly show that all perturbative fully self-consistent Green's function methods are size-extensive and size-consistent.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Nan Yeh
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Miguel A Morales
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Sukurma Z, Schlipf M, Humer M, Taheridehkordi A, Kresse G. Toward Large-Scale AFQMC Calculations: Large Time Step Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2024; 20:4205-4217. [PMID: 38750634 PMCID: PMC11137827 DOI: 10.1021/acs.jctc.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
We report modifications of the ph-AFQMC algorithm that allow the use of large time steps and reliable time step extrapolation. Our modified algorithm eliminates size-consistency errors present in the standard algorithm when large time steps are employed. We investigate various methods to approximate the exponential of the one-body operator within the AFQMC framework, distinctly demonstrating the superiority of Krylov methods over the conventional Taylor expansion. We assess various propagators within AFQMC and demonstrate that the Split-2 propagator is the optimal method, exhibiting the smallest time-step errors. For the HEAT set molecules, the time-step extrapolated energies deviate on average by only 0.19 kcal/mol from the accurate small time-step energies. For small water clusters, we obtain accurate complete basis-set binding energies using time-step extrapolation with a mean absolute error of 0.07 kcal/mol compared to CCSD(T). Using large time-step ph-AFQMC for the N2 dimer, we show that accurate bond lengths can be obtained while reducing CPU time by an order of magnitude.
Collapse
Affiliation(s)
- Zoran Sukurma
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
- University
of Vienna, Faculty of Physics
& Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Martin Schlipf
- VASP
Software GmbH, Berggasse
21/14, 1090 Vienna, Austria
| | - Moritz Humer
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
- University
of Vienna, Faculty of Physics
& Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Amir Taheridehkordi
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Georg Kresse
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP
Software GmbH, Sensengasse
8, 1090 Vienna, Austria
| |
Collapse
|
6
|
Pham HQ, Ouyang R, Lv D. Scalable Quantum Monte Carlo with Direct-Product Trial Wave Functions. J Chem Theory Comput 2024; 20:3524-3534. [PMID: 38700513 DOI: 10.1021/acs.jctc.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The computational demand posed by applying multi-Slater determinant trials in phaseless auxiliary-field quantum Monte Carlo methods (MSD-AFQMC) is particularly significant for molecules exhibiting strong correlations. Here, we propose using direct-product wave functions as trials for MSD-AFQMC, aiming to reduce computational overhead by leveraging the compactness of multi-Slater determinant trials in direct-product form (DP-MSD). This efficiency arises when the active space can be divided into noncoupling subspaces, a condition we term "decomposable active space". By employing localized-active space self-consistent field wave functions as an example of such trials, we demonstrate our proposed approach across a range of molecular systems, each exhibiting varying degrees of complexity in their electronic structures. Our findings indicate that the compact DP-MSD trials can reduce computational costs substantially, by up to 36 times for the C2H6N4 molecule where the two double bonds between nitrogen N=N are clearly separated by a C-C single bond, while maintaining accuracy when active spaces are decomposable. In the case of larger systems such as the benzene dimer, characterized by weak coupling between the two monomers, we observed a decrease in computational cost compared to using a complete active space trial, yet we retained the same level of accuracy. However, for systems where these active subspaces strongly couple, a scenario we refer to as "strong subspace coupling", the method's accuracy decreases compared to that achieved with a complete active space approach. We anticipate that our method will be beneficial for systems with noncoupling to weakly coupling subspaces that require local multireference treatments.
Collapse
Affiliation(s)
- Hung Q Pham
- ByteDance Research, San Jose, California 95110, United States
| | | | - Dingshun Lv
- ByteDance Research, Zhonghang Plaza, No. 43, North third Ring West Road, 100098 Beijing, China
| |
Collapse
|
7
|
Kurian JS, Ye HZ, Mahajan A, Berkelbach TC, Sharma S. Toward Linear Scaling Auxiliary-Field Quantum Monte Carlo with Local Natural Orbitals. J Chem Theory Comput 2024; 20:134-142. [PMID: 38113195 DOI: 10.1021/acs.jctc.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We develop a local correlation variant of auxiliary-field quantum Monte Carlo (AFQMC) based on local natural orbitals (LNO-AFQMC). In LNO-AFQMC, independent AFQMC calculations are performed for each localized occupied orbital using a truncated set of tailored orbitals. Because the size of this space does not grow with the system size for a target accuracy, the method has linear scaling. Applying LNO-AFQMC to molecular problems containing a few hundred to a thousand orbitals, we demonstrate convergence of total energies with significantly reduced costs. The savings are more significant for larger systems and larger basis sets. However, even for our smallest system studied, we find that LNO-AFQMC is cheaper than canonical AFQMC, in contrast with many other reduced-scaling methods. Perhaps most significantly, we show that energy differences converge much more quickly than total energies, making the method ideal for applications in chemistry and material science. Our work paves the way for linear scaling AFQMC calculations of strongly correlated systems, which would have a transformative effect on ab initio quantum chemistry.
Collapse
Affiliation(s)
- Jo S Kurian
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
8
|
Loaiza I, Izmaylov AF. Block-Invariant Symmetry Shift: Preprocessing Technique for Second-Quantized Hamiltonians to Improve Their Decompositions to Linear Combination of Unitaries. J Chem Theory Comput 2023; 19:8201-8209. [PMID: 37939198 DOI: 10.1021/acs.jctc.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Computational cost of energy estimation for molecular electronic Hamiltonians via quantum phase estimation (QPE) grows with the difference between the largest and smallest eigenvalues of the Hamiltonian. In this work, we propose a preprocessing procedure that reduces the norm of the Hamiltonian without changing its eigenspectrum for the target states of a particular symmetry. The new procedure, block-invariant symmetry shift (BLISS), builds an operator T̂ such that the cost of implementing H ^ - T ^ is reduced compared to that of Ĥ, yet H ^ - T ^ acts on the subspaces of interest the same way as Ĥ does. BLISS performance is demonstrated for a linear combination of unitaries (LCU)-based QPE approaches on a set of small molecules. Using the number of electrons as the symmetry specifying the target set of states, BLISS provided a factor of 2 reduction of 1-norm for several LCU decompositions compared to their unshifted versions.
Collapse
Affiliation(s)
- Ignacio Loaiza
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
- Zapata Computing Canada Inc., Toronto M5E 1E5, Canada
| | - Artur F Izmaylov
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
| |
Collapse
|
9
|
Motta M, Sung KJ, Whaley KB, Head-Gordon M, Shee J. Bridging physical intuition and hardware efficiency for correlated electronic states: the local unitary cluster Jastrow ansatz for electronic structure. Chem Sci 2023; 14:11213-11227. [PMID: 37860666 PMCID: PMC10583744 DOI: 10.1039/d3sc02516k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
A prominent goal in quantum chemistry is to solve the molecular electronic structure problem for ground state energy with high accuracy. While classical quantum chemistry is a relatively mature field, the accurate and scalable prediction of strongly correlated states found, e.g., in bond breaking and polynuclear transition metal compounds remains an open problem. Within the context of a variational quantum eigensolver, we propose a new family of ansatzes which provides a more physically appropriate description of strongly correlated electrons than a unitary coupled cluster with single and double excitations (qUCCSD), with vastly reduced quantum resource requirements. Specifically, we present a set of local approximations to the unitary cluster Jastrow wavefunction motivated by Hubbard physics. As in the case of qUCCSD, exactly computing the energy scales factorially with system size on classical computers but polynomially on quantum devices. The local unitary cluster Jastrow ansatz removes the need for SWAP gates, can be tailored to arbitrary qubit topologies (e.g., square, hex, and heavy-hex), and is well-suited to take advantage of continuous sets of quantum gates recently realized on superconducting devices with tunable couplers. The proposed family of ansatzes demonstrates that hardware efficiency and physical transparency are not mutually exclusive; indeed, chemical and physical intuition regarding electron correlation can illuminate a useful path towards hardware-friendly quantum circuits.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM Research - Almaden San Jose CA 95120 USA
| | - Kevin J Sung
- IBM Quantum, IBM T. J. Watson Research Center Yorktown Heights NY 10598 USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Berkeley Quantum Information and Computation Center, University of California Berkeley CA 94720 USA
- Challenge Institute for Quantum Computation, University of California Berkeley CA 94720 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - James Shee
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Chemistry, Rice University Houston TX 77005 USA
| |
Collapse
|
10
|
Liu A, Zhang T, Hammes-Schiffer S, Li X. Multicomponent Cholesky Decomposition: Application to Nuclear-Electronic Orbital Theory. J Chem Theory Comput 2023; 19:6255-6262. [PMID: 37699735 DOI: 10.1021/acs.jctc.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The Cholesky decomposition technique is commonly used to reduce the memory requirement for storing two-particle repulsion integrals in quantum chemistry calculations that use atomic orbital bases. However, when quantum methods use multicomponent bases, such as nuclear-electronic orbitals, additional challenges are introduced due to asymmetric two-particle integrals. This work proposes several multicomponent Cholesky decomposition methods for calculations using nuclear-electronic orbital density functional theory. To analyze the errors in different Cholesky decomposition components, benchmark calculations using water clusters are carried out. The largest benchmark calculation is a water cluster (H2O)27 where all 54 protons are treated quantum mechanically. This study provides energetic and complexity analyses to demonstrate the accuracy and performance of the proposed multicomponent Cholesky decomposition method.
Collapse
Affiliation(s)
- Aodong Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Banerjee S, Zhang T, Dyall KG, Li X. Relativistic resolution-of-the-identity with Cholesky integral decomposition. J Chem Phys 2023; 159:114119. [PMID: 37728204 DOI: 10.1063/5.0161871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
In this study, we present an efficient integral decomposition approach called the restricted-kinetic-balance resolution-of-the-identity (RKB-RI) algorithm, which utilizes a tunable RI method based on the Cholesky integral decomposition for in-core relativistic quantum chemistry calculations. The RKB-RI algorithm incorporates the restricted-kinetic-balance condition and offers a versatile framework for accurate computations. Notably, the Cholesky integral decomposition is employed not only to approximate symmetric large-component electron repulsion integrals but also those involving small-component basis functions. In addition to comprehensive error analysis, we investigate crucial conditions, such as the kinetic balance condition and variational stability, which underlie the applicability of Dirac relativistic electronic structure theory. We compare the computational cost of the RKB-RI approach with the full in-core method to assess its efficiency. To evaluate the accuracy and reliability of the RKB-RI method proposed in this work, we employ actinyl oxides as benchmark systems, leveraging their properties for validation purposes. This investigation provides valuable insights into the capabilities and performance of the RKB-RI algorithm and establishes its potential as a powerful tool in the field of relativistic quantum chemistry.
Collapse
Affiliation(s)
- Samragni Banerjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Sukurma Z, Schlipf M, Humer M, Taheridehkordi A, Kresse G. Benchmark Phaseless Auxiliary-Field Quantum Monte Carlo Method for Small Molecules. J Chem Theory Comput 2023; 19:4921-4934. [PMID: 37470356 PMCID: PMC10413869 DOI: 10.1021/acs.jctc.3c00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/21/2023]
Abstract
We report a scalable Fortran implementation of the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) and demonstrate its excellent performance and beneficial scaling with respect to system size. Furthermore, we investigate modifications of the phaseless approximation that can help to reduce the overcorrelation problems common to the ph-AFQMC. We apply the method to the 26 molecules in the HEAT set, the benzene molecule, and water clusters. We observe a mean absolute deviation of the total energy of 1.15 kcal/mol for the molecules in the HEAT set, close to chemical accuracy. For the benzene molecule, the modified algorithm despite using a single-Slater-determinant trial wavefunction yields the same accuracy as the original phaseless scheme with 400 Slater determinants. Despite these improvements, we find systematic errors for the CN, CO2, and O2 molecules that need to be addressed with more accurate trial wavefunctions. For water clusters, we find that the ph-AFQMC yields excellent binding energies that differ from CCSD(T) by typically less than 0.5 kcal/mol.
Collapse
Affiliation(s)
- Zoran Sukurma
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Faculty
of Physics & Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | | | - Moritz Humer
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Faculty
of Physics & Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Amir Taheridehkordi
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Georg Kresse
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP
Software GmbH, Sensengasse 8, 1090 Vienna, Austria
| |
Collapse
|
13
|
Lunts P, Albergo MS, Lindsey M. Non-Hertz-Millis scaling of the antiferromagnetic quantum critical metal via scalable Hybrid Monte Carlo. Nat Commun 2023; 14:2547. [PMID: 37137882 PMCID: PMC10156689 DOI: 10.1038/s41467-023-37686-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
A key component of the phase diagram of many iron-based superconductors and electron-doped cuprates is believed to be a quantum critical point (QCP), delineating the onset of antiferromagnetic spin-density wave order in a quasi-two-dimensional metal. The universality class of this QCP is believed to play a fundamental role in the description of the proximate non-Fermi liquid behavior and superconducting phase. A minimal model for this transition is the O(3) spin-fermion model. Despite many efforts, a definitive characterization of its universal properties is still lacking. Here, we numerically study the O(3) spin-fermion model and extract the scaling exponents and functional form of the static and zero-momentum dynamical spin susceptibility. We do this using a Hybrid Monte Carlo (HMC) algorithm with a novel auto-tuning procedure, which allows us to study unprecedentedly large systems of 80 × 80 sites. We find a strong violation of the Hertz-Millis form, contrary to all previous numerical results. Furthermore, the form that we do observe provides good evidence that the universal scaling is actually governed by the analytically tractable fixed point discovered near perfect "hot-spot'" nesting, even for a larger nesting window. Our predictions can be directly tested with neutron scattering. Additionally, the HMC method we introduce is generic and can be used to study other fermionic models of quantum criticality, where there is a strong need to simulate large systems.
Collapse
Affiliation(s)
- Peter Lunts
- Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD, 20742, USA.
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY, 10010, USA.
| | - Michael S Albergo
- Center for Cosmology and Particle Physics, New York University, New York, NY, 10003, USA
| | - Michael Lindsey
- Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
| |
Collapse
|
14
|
Chen Y, Zhang L, E W, Car R. Hybrid Auxiliary Field Quantum Monte Carlo for Molecular Systems. J Chem Theory Comput 2023. [PMID: 37071815 PMCID: PMC10373495 DOI: 10.1021/acs.jctc.3c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
We propose a quantum Monte Carlo approach to solve the many-body Schrödinger equation for the electronic ground state. The method combines optimization from variational Monte Carlo and propagation from auxiliary field quantum Monte Carlo in a way that significantly alleviates the sign problem. In application to molecular systems, we obtain highly accurate results for configurations dominated by either dynamic or static electronic correlation.
Collapse
Affiliation(s)
- Yixiao Chen
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| | - Linfeng Zhang
- AI for Science Institute, Beijing 100080, People's Republic of China
- DP Technology, Beijing 100080, People's Republic of China
| | - Weinan E
- AI for Science Institute, Beijing 100080, People's Republic of China
- Center for Machine Learning Research, School of Mathematical Sciences, Peking University, Beijing 100084, People's Republic of China
| | - Roberto Car
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Shee J, Weber JL, Reichman DR, Friesner RA, Zhang S. On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: A highly accurate method for transition metals and beyond. J Chem Phys 2023; 158:140901. [PMID: 37061483 PMCID: PMC10089686 DOI: 10.1063/5.0134009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 04/17/2023] Open
Abstract
Approximate solutions to the ab initio electronic structure problem have been a focus of theoretical and computational chemistry research for much of the past century, with the goal of predicting relevant energy differences to within "chemical accuracy" (1 kcal/mol). For small organic molecules, or in general, for weakly correlated main group chemistry, a hierarchy of single-reference wave function methods has been rigorously established, spanning perturbation theory and the coupled cluster (CC) formalism. For these systems, CC with singles, doubles, and perturbative triples is known to achieve chemical accuracy, albeit at O(N7) computational cost. In addition, a hierarchy of density functional approximations of increasing formal sophistication, known as Jacob's ladder, has been shown to systematically reduce average errors over large datasets representing weakly correlated chemistry. However, the accuracy of such computational models is less clear in the increasingly important frontiers of chemical space including transition metals and f-block compounds, in which strong correlation can play an important role in reactivity. A stochastic method, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC), has been shown to be capable of producing chemically accurate predictions even for challenging molecular systems beyond the main group, with relatively low O(N3 - N4) cost and near-perfect parallel efficiency. Herein, we present our perspectives on the past, present, and future of the ph-AFQMC method. We focus on its potential in transition metal quantum chemistry to be a highly accurate, systematically improvable method that can reliably probe strongly correlated systems in biology and chemical catalysis and provide reference thermochemical values (for future development of density functionals or interatomic potentials) when experiments are either noisy or absent. Finally, we discuss the present limitations of the method and where we expect near-term development to be most fruitful.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John L. Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| |
Collapse
|
16
|
Hohenstein EG, Oumarou O, Al-Saadon R, Anselmetti GLR, Scheurer M, Gogolin C, Parrish RM. Efficient quantum analytic nuclear gradients with double factorization. J Chem Phys 2023; 158:114119. [PMID: 36948843 DOI: 10.1063/5.0137167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Efficient representations of the Hamiltonian, such as double factorization, drastically reduce the circuit depth or the number of repetitions in error corrected and noisy intermediate-scale quantum (NISQ) algorithms for chemistry. We report a Lagrangian-based approach for evaluating relaxed one- and two-particle reduced density matrices from double factorized Hamiltonians, unlocking efficiency improvements in computing the nuclear gradient and related derivative properties. We demonstrate the accuracy and feasibility of our Lagrangian-based approach to recover all off-diagonal density matrix elements in classically simulated examples with up to 327 quantum and 18 470 total atoms in QM/MM simulations with modest-sized quantum active spaces. We show this in the context of the variational quantum eigensolver in case studies, such as transition state optimization, ab initio molecular dynamics simulation, and energy minimization of large molecular systems.
Collapse
|
17
|
Motta M, Jones GO, Rice JE, Gujarati TP, Sakuma R, Liepuoniute I, Garcia JM, Ohnishi YY. Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor. Chem Sci 2023; 14:2915-2927. [PMID: 36937596 PMCID: PMC10016331 DOI: 10.1039/d2sc06019a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3S+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we generalize a qubit reduction technique termed entanglement forging or EF [A. Eddins et al., Phys. Rev. X Quantum, 2022, 3, 010309], currently restricted to the evaluation of ground-state energies, to the treatment of molecular properties. While in a conventional quantum simulation a qubit represents a spin-orbital, within EF a qubit represents a spatial orbital, reducing the number of required qubits by half. We combine the generalized EF with quantum subspace expansion [W. Colless et al., Phys. Rev. X, 2018, 8, 011021], a technique used to project the time-independent Schrodinger equation for ground- and excited-states in a subspace. To enable experimental demonstration of this algorithmic workflow, we deploy a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. This study is an important step towards the computational description of photo-dissociation on near-term quantum devices, as it can be generalized to other photodissociation processes and naturally extended in different ways to achieve more realistic simulations.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA
| | - Gavin O Jones
- IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA
| | - Julia E Rice
- IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA
| | - Tanvi P Gujarati
- IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA
| | - Rei Sakuma
- Materials Informatics Initiative, RD Technology & Digital Transformation Center, JSR Corporation 3-103-9, Tonomachi, Kawasaki-ku Kawasaki 210-0821 Kanagawa Japan
| | - Ieva Liepuoniute
- IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA
| | - Jeannette M Garcia
- IBM Quantum, IBM Research - Almaden 650 Harry Road San Jose 95120 CA USA
| | - Yu-Ya Ohnishi
- Materials Informatics Initiative, RD Technology & Digital Transformation Center, JSR Corporation 3-103-9, Tonomachi, Kawasaki-ku Kawasaki 210-0821 Kanagawa Japan
| |
Collapse
|
18
|
Malone FD, Mahajan A, Spencer JS, Lee J. ipie: A Python-Based Auxiliary-Field Quantum Monte Carlo Program with Flexibility and Efficiency on CPUs and GPUs. J Chem Theory Comput 2023; 19:109-121. [PMID: 36503227 DOI: 10.1021/acs.jctc.2c00934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [Cu2O2]2+. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are achieved in ipie. We show an interface of ipie with PySCF as well as a straightforward template for adding new estimators to ipie. Our timing benchmarks against other C++ codes, QMCPACK and Dice, suggest that ipie is faster or similarly performing for all chemical systems considered on both CPUs and GPUs. Our results on [Cu2O2]2+ using selected configuration interaction trials show that it is possible to converge the ph-AFQMC isomerization energy between bis(μ-oxo) and μ-η2:η2 peroxo configurations to the exact known results for small basis sets with 105-106 determinants. We also report the isomerization energy with a quadruple-zeta basis set with an estimated error less than a kcal/mol, which involved 52 electrons and 290 orbitals with 106 determinants in the trial wave function. These results highlight the utility of ph-AFQMC and ipie for systems with modest strong correlation and large-scale dynamic correlation.
Collapse
Affiliation(s)
- Fionn D Malone
- Google Research, Venice, California 90291, United States
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | | | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
19
|
Lee J, Pham HQ, Reichman DR. Twenty Years of Auxiliary-Field Quantum Monte Carlo in Quantum Chemistry: An Overview and Assessment on Main Group Chemistry and Bond-Breaking. J Chem Theory Comput 2022; 18:7024-7042. [PMID: 36255074 DOI: 10.1021/acs.jctc.2c00802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we present an overview of the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) approach from a computational quantum chemistry perspective and present a numerical assessment of its performance on main group chemistry and bond-breaking problems with a total of 1004 relative energies. While our benchmark study is somewhat limited, we make recommendations for the use of ph-AFQMC for general main-group chemistry applications. For systems where single determinant wave functions are qualitatively accurate, we expect the accuracy of ph-AFQMC in conjunction with a single-determinant trial wave function to be between that of coupled-cluster with singles and doubles (CCSD) and CCSD with perturbative triples (CCSD(T)). For these applications, ph-AFQMC should be a method of choice when canonical CCSD(T) is too expensive to run. For systems where multireference (MR) wave functions are needed for qualitative accuracy, ph-AFQMC is far more accurate than MR perturbation theory methods and competitive with MR configuration interaction (MRCI) methods. Due to the computational efficiency of ph-AFQMC compared to MRCI, we recommended ph-AFQMC as a method of choice for handling dynamic correlation in MR problems. We conclude with a discussion of important directions for future development of the ph-AFQMC approach.
Collapse
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Hung Q Pham
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
20
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
21
|
Weber JL, Vuong H, Devlaminck PA, Shee J, Lee J, Reichman DR, Friesner RA. A Localized-Orbital Energy Evaluation for Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2022; 18:3447-3459. [PMID: 35507769 DOI: 10.1021/acs.jctc.2c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) has recently emerged as a promising method for the production of benchmark-level simulations of medium- to large-sized molecules because of its accuracy and favorable polynomial scaling with system size. Unfortunately, the memory footprints of standard energy evaluation algorithms are nontrivial, which can significantly impact timings on graphical processing units (GPUs) where memory is limited. Previous attempts to reduce scaling by taking advantage of the low-rank structure of the Coulombic integrals have been successful but exhibit high prefactors, making their utility limited to very large systems. Here we present a complementary cubic-scaling route to reduce memory and computational scaling based on the low rank of the Coulombic interactions between localized orbitals, focusing on the application to ph-AFQMC. We show that the error due to this approximation, which we term localized-orbital AFQMC (LO-AFQMC), is systematic and controllable via a single variable and that the method is computationally favorable even for small systems. We present results demonstrating robust retention of accuracy versus both experiment and full ph-AFQMC for a variety of test cases chosen for their potential difficulty for localized-orbital-based methods, including the singlet-triplet gaps of the polyacenes benzene through pentacene, the heats of formation for a set of Platonic hydrocarbon cages, and the total energy of ferrocene, Fe(Cp)2. Finally, we reproduce our previous result for the gas-phase ionization energy of Ni(Cp)2, agreeing with full ph-AFQMC to within statistical error while using less than 1/15th of the computer time.
Collapse
Affiliation(s)
- John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Hung Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Pierre A Devlaminck
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
22
|
Motta M, Rice JE. Emerging quantum computing algorithms for quantum chemistry. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM Research‐Almaden San Jose California USA
| | - Julia E. Rice
- IBM Quantum, IBM Research‐Almaden San Jose California USA
| |
Collapse
|
23
|
Mahajan A, Lee J, Sharma S. Selected configuration interaction wave functions in phaseless auxiliary field quantum Monte Carlo. J Chem Phys 2022; 156:174111. [DOI: 10.1063/5.0087047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present efficient algorithms for using selected configuration interaction (sCI) trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC). These advances, geared towards optimizing computational performance for longer CI expansions, allow us to use up to a million configurations in the trial state for ph-AFQMC. In one example, we found the cost of ph-AFQMC per sample to increase only by a factor of about 3 for a calculation with 104 configurations compared to that with a single one, demonstrating the tiny computational overhead due to a longer expansion. This favorable scaling allows us to study the systematic convergence of the phaseless bias in AFQMC calculations with an increasing number of configurations and provides a means to gauge the accuracy of ph-AFQMC with other trial states. We also show how the scalability issues of sCI trial states for large system sizes could be mitigated by restricting them to a moderately sized orbital active space and leveraging the near-cancellation of out of active space phaseless errors.
Collapse
Affiliation(s)
- Ankit Mahajan
- University of Colorado at Boulder, United States of America
| | - Joonho Lee
- Chemistry, Columbia University, United States of America
| | - Sandeep Sharma
- University of Colorado at Boulder, United States of America
| |
Collapse
|
24
|
Mahajan A, Sharma S. Taming the Sign Problem in Auxiliary-Field Quantum Monte Carlo Using Accurate Wave Functions. J Chem Theory Comput 2021; 17:4786-4798. [PMID: 34232637 DOI: 10.1021/acs.jctc.1c00371] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore different ways of incorporating accurate trial wave functions into free projection auxiliary-field quantum Monte Carlo (fp-AFQMC). States employed include coupled-cluster singles and doubles, multi-Slater, and symmetry-projected mean-field wave functions. We adapt a recently proposed fast multi-Slater local energy evaluation algorithm for fp-AFQMC, making the use of long expansions from selected configuration interaction methods feasible. We demonstrate how these wave functions serve to mitigate the sign problem and accelerate convergence in quantum chemical problems, allowing the application of fp-AFQMC to systems of substantial sizes. Our calculations on the widely studied model Cu2O22+ system show that many previously reported isomerization energies differ substantially from the near-exact fp-AFQMC value.
Collapse
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
25
|
Song C, Martínez TJ, Neaton JB. A diagrammatic approach for automatically deriving analytical gradients of tensor hyper-contracted electronic structure methods. J Chem Phys 2021; 155:024108. [PMID: 34266268 DOI: 10.1063/5.0055914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a diagrammatic approach to facilitate the automatic derivation of analytical nuclear gradients for tensor hyper-contraction (THC) based electronic structure methods. The automatically derived gradients are guaranteed to have the same scaling in terms of both operation count and memory footprint as the underlying energy calculations, and the computation of a gradient is roughly three times as costly as the underlying energy. The new diagrammatic approach enables the first cubic scaling implementation of nuclear derivatives for THC tensors fitted in molecular orbital basis (MO-THC). Furthermore, application of this new approach to THC-MP2 analytical gradients leads to an implementation, which is at least four times faster than the previously reported, manually derived implementation. Finally, we apply the new approach to the 14 tensor contraction patterns appearing in the supporting subspace formulation of multireference perturbation theory, laying the foundation for developments of analytical nuclear gradients and nonadiabatic coupling vectors for multi-state CASPT2.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Zhang T, Liu X, Valeev EF, Li X. Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals. J Phys Chem A 2021; 125:4258-4265. [PMID: 33970626 DOI: 10.1021/acs.jpca.1c02317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As quantum chemistry calculations deal with molecular systems of increasing size, the memory requirement to store electron-repulsion integrals (ERIs) greatly outpaces the physical memory available in computing hardware. The Cholesky decomposition of ERIs provides a convenient yet accurate technique to reduce the storage requirement of integrals. Recent developments of a two-step algorithm have drastically reduced the memory operation (MOP) count, leaving the floating operation (FLOP) count as the last frontier of cost reduction in the Cholesky ERI algorithm. In this report, we introduce a dynamic integral tracking, reusing, and compression/elimination protocol embedded in the two-step Cholesky ERI method. Benchmark studies suggest that this technique becomes particularly advantageous when the basis set consists of many computationally expensive high-angular-momentum basis functions. With this dynamic-ERI improvement, the Cholesky ERI approach proves to be a highly efficient algorithm with minimal FLOP and MOP count.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
27
|
Pierce K, Rishi V, Valeev EF. Robust Approximation of Tensor Networks: Application to Grid-Free Tensor Factorization of the Coulomb Interaction. J Chem Theory Comput 2021; 17:2217-2230. [PMID: 33780616 DOI: 10.1021/acs.jctc.0c01310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximation of a tensor network by approximating (e.g., factorizing) one or more of its constituent tensors can be improved by canceling the leading-order error due to the constituents' approximation. The utility of such robust approximation is demonstrated for robust canonical polyadic (CP) approximation of a (density-fitting) factorized two-particle Coulomb interaction tensor. The resulting algebraic (grid-free) approximation for the Coulomb tensor, closely related to the factorization appearing in pseudospectral and tensor hypercontraction approaches, is efficient and accurate, with significantly reduced rank compared to the naive (nonrobust) approximation. Application of the robust approximation to the particle-particle ladder term in the coupled-cluster singles and doubles reduces the size complexity from O (N6) to O (N5) with robustness ensuring negligible errors in chemically relevant energy differences using CP ranks approximately equal to the size of the density-fitting basis.
Collapse
Affiliation(s)
- Karl Pierce
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Varun Rishi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
28
|
Abstract
We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
29
|
Shi H, Zhang S. Some recent developments in auxiliary-field quantum Monte Carlo for real materials. J Chem Phys 2021; 154:024107. [DOI: 10.1063/5.0031024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Shi
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| |
Collapse
|
30
|
Kowalski K, Peng B. Quantum simulations employing connected moments expansions. J Chem Phys 2020; 153:201102. [PMID: 33261481 DOI: 10.1063/5.0030688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Further advancement of quantum computing (QC) is contingent on enabling many-body models that avoid deep circuits and excessive use of CNOT gates. To this end, we develop a QC approach employing finite-order connected moment expansions (CMX) and affordable procedures for initial state preparation. We demonstrate the performance of our approach employing several quantum variants of CMX through the classical emulations on the H2 molecule potential energy surface and the Anderson model with a broad range of correlation strength. The results show that our approach is robust and flexible. Good agreement with exact solutions can be maintained even at the dissociation and strong correlation limits.
Collapse
Affiliation(s)
- Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
31
|
Lee J, Malone FD, Reichman DR. The performance of phaseless auxiliary-field quantum Monte Carlo on the ground state electronic energy of benzene. J Chem Phys 2020; 153:126101. [DOI: 10.1063/5.0024835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
32
|
Lee J, Reichman DR. Stochastic resolution-of-the-identity auxiliary-field quantum Monte Carlo: Scaling reduction without overhead. J Chem Phys 2020; 153:044131. [DOI: 10.1063/5.0015077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
33
|
Malone FD, Zhang S, Morales MA. Accelerating Auxiliary-Field Quantum Monte Carlo Simulations of Solids with Graphical Processing Units. J Chem Theory Comput 2020; 16:4286-4297. [DOI: 10.1021/acs.jctc.0c00262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Shuai Zhang
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
34
|
Lee J, Malone FD, Morales MA. Utilizing Essential Symmetry Breaking in Auxiliary-Field Quantum Monte Carlo: Application to the Spin Gaps of the C36 Fullerene and an Iron Porphyrin Model Complex. J Chem Theory Comput 2020; 16:3019-3027. [DOI: 10.1021/acs.jctc.0c00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| |
Collapse
|
35
|
Motta M, Gujarati TP, Rice JE, Kumar A, Masteran C, Latone JA, Lee E, Valeev EF, Takeshita TY. Quantum simulation of electronic structure with a transcorrelated Hamiltonian: improved accuracy with a smaller footprint on the quantum computer. Phys Chem Chem Phys 2020; 22:24270-24281. [DOI: 10.1039/d0cp04106h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular quantum computing simulations are currently limited by the use of minimal Gaussian bases, a problem we overcome using a canonical transcorrelated Hamiltonian to accelerate basis convergence, with unitary coupled cluster as an example.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum
- IBM Research – Almaden
- San Jose
- USA
| | | | | | | | | | | | - Eunseok Lee
- Mercedes-Benz Research and Development North America
- Sunnyvale
- USA
| | | | | |
Collapse
|
36
|
Shee J, Arthur EJ, Zhang S, Reichman DR, Friesner RA. Singlet–Triplet Energy Gaps of Organic Biradicals and Polyacenes with Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2019; 15:4924-4932. [DOI: 10.1021/acs.jctc.9b00534] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Shee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Evan J. Arthur
- Schrodinger Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|