1
|
Saha D, Richerme P, Iyengar SS. Quantum Circuit and Mapping Algorithms for Wavepacket Dynamics: Case Study of Anharmonic Hydrogen Bonds in Protonated and Hydroxide Water Clusters. J Chem Theory Comput 2025; 21:3814-3831. [PMID: 40172011 DOI: 10.1021/acs.jctc.4c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The accurate computational study of wavepacket nuclear dynamics is considered to be a classically intractable problem, particularly with increasing dimensions. Here, we present two algorithms that, in conjunction with other methods developed by us, may result in one set of contributions for performing quantum nuclear dynamics in arbitrary dimensions. For one of the two algorithms discussed here, we present a direct map between the Born-Oppenheimer Hamiltonian describing the nuclear wavepacket time evolution and the control parameters of a spin-lattice Hamiltonian that describes the dynamics of qubit states in an ion-trap quantum computer. This map is exact for three qubits, and when implemented, the dynamics of the spin states emulates those of the nuclear wavepacket in a continuous representation. However, this map becomes approximate as the number of qubits grows. In a second algorithm, we present a general quantum circuit decomposition formalism for such problems using a method called the Quantum Shannon Decomposition. This algorithm is more robust and is exact for any number of qubits at the cost of increased circuit complexity. The resultant circuit is implemented on IBM's quantum simulator (QASM) for 3-7 qubits, without using a noise model so as to test the intrinsic accuracy of the method. In both cases, the wavepacket dynamics is found to be in good agreement with the classical propagation result and the corresponding vibrational frequencies obtained from the wavepacket density time evolution are in agreement to within a few tenths of a wavenumber.
Collapse
Affiliation(s)
- Debadrita Saha
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Philip Richerme
- Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Dwivedi A, Lopez-Ruiz MA, Iyengar SS. Resource Optimization for Quantum Dynamics with Tensor Networks: Quantum and Classical Algorithms. J Phys Chem A 2024; 128:6774-6797. [PMID: 39101545 DOI: 10.1021/acs.jpca.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The exponential scaling of the quantum degrees of freedom with the size of the system is one of the biggest challenges in computational chemistry and particularly in quantum dynamics. We present a tensor network approach for the time-evolution of the nuclear degrees of freedom of multiconfigurational chemical systems at a reduced storage and computational complexity. We also present quantum algorithms for the resultant dynamics. To preserve the compression advantage achieved via tensor network decompositions, we present an adaptive algorithm for the regularization of nonphysical bond dimensions, preventing the potentially exponential growth of these with time. While applicable to any quantum dynamical problem, our method is particularly valuable for dynamical simulations of nuclear chemical systems. Our algorithm is demonstrated using ab initio potentials obtained for a symmetric hydrogen-bonded system, namely, the protonated 2,2'-bipyridine, and compared to exact diagonalization numerical results.
Collapse
Affiliation(s)
- Anurag Dwivedi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Miguel Angel Lopez-Ruiz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Iyengar SS, Ricard TC, Zhu X. Reformulation of All ONIOM-Type Molecular Fragmentation Approaches and Many-Body Theories Using Graph-Theory-Based Projection Operators: Applications to Dynamics, Molecular Potential Surfaces, Machine Learning, and Quantum Computing. J Phys Chem A 2024; 128:466-478. [PMID: 38180503 DOI: 10.1021/acs.jpca.3c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We present a graph-theory-based reformulation of all ONIOM-based molecular fragmentation methods. We discuss applications to (a) accurate post-Hartree-Fock AIMD that can be conducted at DFT cost for medium-sized systems, (b) hybrid DFT condensed-phase studies at the cost of pure density functionals, (c) reduced cost on-the-fly large basis gas-phase AIMD and condensed-phase studies, (d) post-Hartree-Fock-level potential surfaces at DFT cost to obtain quantum nuclear effects, and (e) novel transfer machine learning protocols derived from these measures. Additionally, in previous work, the unifying strategy discussed here has been used to construct new quantum computing algorithms. Thus, we conclude that this reformulation is robust and accurate.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Timothy C Ricard
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiao Zhu
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Iyengar SS, Zhang JH, Saha D, Ricard TC. Graph-| Q⟩⟨ C|: A Quantum Algorithm with Reduced Quantum Circuit Depth for Electronic Structure. J Phys Chem A 2023; 127:9334-9345. [PMID: 37906738 DOI: 10.1021/acs.jpca.3c04261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accurate determination of chemical properties is known to have a critical impact on multiple fundamental chemical problems but is deeply hindered by the steep algebraic scaling of electron correlation calculations and the exponential scaling of quantum nuclear dynamics. With the advent of new quantum computing hardware and associated developments in creating new paradigms for quantum software, this avenue has been recognized as perhaps one way to address exponentially complex challenges in quantum chemistry and molecular dynamics. In this paper, we discuss a new approach to drastically reduce the quantum circuit depth (by several orders of magnitude) and help improve the accuracy in the quantum computation of electron correlation energies for large molecular systems. The method is derived from a graph-theoretic approach to molecular fragmentation and enables us to create a family of projection operators that decompose quantum circuits into separate unitary processes. Some of these processes can be treated on quantum hardware and others on classical hardware in a completely asynchronous and parallel fashion. Numerical benchmarks are provided through the computation of unitary coupled-cluster singles and doubles (UCCSD) energies for medium-sized protonated and neutral water clusters using the new quantum algorithms presented here.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Juncheng Harry Zhang
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Debadrita Saha
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Timothy C Ricard
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Iyengar SS, Kumar A, Saha D, Sabry A. Synthesis of Hidden Subgroup Quantum Algorithms and Quantum Chemical Dynamics. J Chem Theory Comput 2023; 19:6082-6092. [PMID: 37703187 DOI: 10.1021/acs.jctc.3c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
We describe a general formalism for quantum dynamics and show how this formalism subsumes several quantum algorithms, including the Deutsch, Deutsch-Jozsa, Bernstein-Vazirani, Simon, and Shor algorithms as well as the conventional approach to quantum dynamics based on tensor networks. The common framework exposes similarities among quantum algorithms and natural quantum phenomena: we illustrate this connection by showing how the correlated behavior of protons in water wire systems that are common in many biological and materials systems parallels the structure of Shor's algorithm.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Quantum Science and Engineering Center (QSEc), Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Anup Kumar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Debadrita Saha
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Amr Sabry
- Quantum Science and Engineering Center (QSEc), Indiana University, Bloomington, Indiana 47405-7102, United States
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
6
|
Richerme P, Revelle MC, Yale CG, Lobser D, Burch AD, Clark SM, Saha D, Lopez-Ruiz MA, Dwivedi A, Smith JM, Norrell SA, Sabry A, Iyengar SS. Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra. J Phys Chem Lett 2023; 14:7256-7263. [PMID: 37555761 DOI: 10.1021/acs.jpclett.3c01601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Calculating observable properties of chemical systems is often classically intractable and widely viewed as a promising application of quantum information processing. Here, we introduce a new framework for solving generic quantum chemical dynamics problems using quantum logic. We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer, where we experimentally drive the ion-trap system to emulate the quantum wavepacket dynamics corresponding to the shared-proton within an anharmonic hydrogen bonded system. Following the experimental creation and propagation of the shared-proton wavepacket on the ion-trap, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to spectroscopic accuracy (3.3 cm-1 wavenumbers, corresponding to >99.9% fidelity). Our approach introduces a new paradigm for studying the chemical dynamics and vibrational spectra of molecules and opens the possibility to describe the behavior of complex molecular processes with unprecedented accuracy.
Collapse
Affiliation(s)
- Philip Richerme
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Melissa C Revelle
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Christopher G Yale
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Daniel Lobser
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Ashlyn D Burch
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Susan M Clark
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Debadrita Saha
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Anurag Dwivedi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sam A Norrell
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
| | - Amr Sabry
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
- Department of Computer Science, Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Kumar A, DeGregorio N, Ricard T, Iyengar SS. Graph-Theoretic Molecular Fragmentation for Potential Surfaces Leads Naturally to a Tensor Network Form and Allows Accurate and Efficient Quantum Nuclear Dynamics. J Chem Theory Comput 2022; 18:7243-7259. [PMID: 36332133 DOI: 10.1021/acs.jctc.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular fragmentation methods have revolutionized quantum chemistry. Here, we use a graph-theoretically generated molecular fragmentation method, to obtain accurate and efficient representations for multidimensional potential energy surfaces and the quantum time-evolution operator, which plays a critical role in quantum chemical dynamics. In doing so, we find that the graph-theoretic fragmentation approach naturally reduces the potential portion of the time-evolution operator into a tensor network that contains a stream of coupled lower-dimensional propagation steps to potentially achieve quantum dynamics with reduced complexity. Furthermore, the fragmentation approach used here has previously been shown to allow accurate and efficient computation of post-Hartree-Fock electronic potential energy surfaces, which in many cases has been shown to be at density functional theory cost. Thus, by combining the advantages of molecular fragmentation with the tensor network formalism, the approach yields an on-the-fly quantum dynamics scheme where both the electronic potential calculation and nuclear propagation portion are enormously simplified through a single stroke. The method is demonstrated by computing approximations to the propagator and to potential surfaces for a set of coupled nuclear dimensions within a protonated water wire problem exhibiting the Grotthuss mechanism of proton transport. In all cases, our approach has been shown to reduce the complexity of representing the quantum propagator, and by extension action of the propagator on an initial wavepacket, by several orders, with minimal loss in accuracy.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Timothy Ricard
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Kumar A, DeGregorio N, Iyengar SS. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. J Chem Theory Comput 2021; 17:6671-6690. [PMID: 34623129 DOI: 10.1021/acs.jctc.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a multitopology molecular fragmentation approach, based on graph theory, to calculate multidimensional potential energy surfaces in agreement with post-Hartree-Fock levels of theory but at the density functional theory cost. A molecular assembly is coarse-grained into a set of graph-theoretic nodes that are then connected with edges to represent a collection of locally interacting subsystems up to an arbitrary order. Each of the subsystems is treated at two levels of electronic structure theory, the result being used to construct many-body expansions that are embedded within an ONIOM scheme. These expansions converge rapidly with the many-body order (or graphical rank) of subsystems and capture many-body interactions accurately and efficiently. However, multiple graphs, and hence multiple fragmentation topologies, may be defined in molecular configuration space that may arise during conformational sampling or from reactive, bond breaking and bond formation, events. Obtaining the resultant potential surfaces is an exponential scaling proposition, given the number of electronic structure computations needed. We utilize a family of graph-theoretic representations within a variational scheme to obtain multidimensional potential surfaces at a reduced cost. The fast convergence of the graph-theoretic expansion with increasing order of many-body interactions alleviates the exponential scaling cost for computing potential surfaces, with the need to only use molecular fragments that contain a fewer number of quantum nuclear degrees of freedom compared to the full system. This is because the dimensionality of the conformational space sampled by the fragment subsystems is much smaller than the full molecular configurational space. Additionally, we also introduce a multidimensional clustering algorithm, based on physically defined criteria, to reduce the number of energy calculations by orders of magnitude. The molecular systems benchmarked include coupled proton motion in protonated water wires. The potential energy surfaces and multidimensional nuclear eigenstates obtained are shown to be in very good agreement with those from explicit post-Hartree-Fock calculations that become prohibitive as the number of quantum nuclear dimensions grows. The developments here provide a rigorous and efficient alternative to this important chemical physics problem.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Panadés-Barrueta RL, Peláez D. Low-rank sum-of-products finite-basis-representation (SOP-FBR) of potential energy surfaces. J Chem Phys 2020; 153:234110. [PMID: 33353311 DOI: 10.1063/5.0027143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sum-of-products finite-basis-representation (SOP-FBR) approach for the automated multidimensional fit of potential energy surfaces (PESs) is presented. In its current implementation, the method yields a PES in the so-called Tucker sum-of-products form, but it is not restricted to this specific ansatz. The novelty of our algorithm lies in the fact that the fit is performed in terms of a direct product of a Schmidt basis, also known as natural potentials. These encode in a non-trivial way all the physics of the problem and, hence, circumvent the usual extra ad hoc and a posteriori adjustments (e.g., damping functions) of the fitted PES. Moreover, we avoid the intermediate refitting stage common to other tensor-decomposition methods, typically used in the context of nuclear quantum dynamics. The resulting SOP-FBR PES is analytical and differentiable ad infinitum. Our ansatz is fully general and can be used in combination with most (molecular) dynamics codes. In particular, it has been interfaced and extensively tested with the Heidelberg implementation of the multiconfiguration time-dependent Hartree quantum dynamical software package.
Collapse
Affiliation(s)
- Ramón L Panadés-Barrueta
- Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), Université Lille 1, Villeneuve d'Ascq Cedex, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Bât. 520, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
10
|
DeGregorio N, Iyengar SS. Challenges in constructing accurate methods for hydrogen transfer reactions in large biological assemblies: rare events sampling for mechanistic discovery and tensor networks for quantum nuclear effects. Faraday Discuss 2020; 221:379-405. [DOI: 10.1039/c9fd00071b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present two methods that address the computational complexities arising in hydrogen transfer reactions in enzyme active sites.
Collapse
Affiliation(s)
- Nicole DeGregorio
- Department of Chemistry
- Department of Physics
- Indiana University
- Bloomington
- USA
| | | |
Collapse
|
11
|
Kumar A, Iyengar SS. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. J Chem Theory Comput 2019; 15:5769-5786. [DOI: 10.1021/acs.jctc.9b00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana-47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana-47405, United States
| |
Collapse
|