1
|
Krupová M, Leszczenko P, Sierka E, Hamplová SE, Klepetářová B, Pelc R, Andrushchenko V. Vibrational circular dichroism of adenosine crystals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124381. [PMID: 38838602 DOI: 10.1016/j.saa.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution. Here, we present the first vibrational circular dichroism (VCD) spectroscopic study of adenosine crystals in solid state. Highly regular arrangement of adenosine molecules in a crystal resulted in a strongly enhanced supramolecular VCD signal originating from long-range coupling of vibrations. The data suggested that adenosine crystals, in contrast to guanosine ones, do not imbibe atmospheric water. Relatively large dimensions of the adenosine crystals resulted in scattering and substantial orientational artifacts affecting the spectra. Several strategies for tackling the artifacts have been proposed and tested. Atypical features in IR absorption spectra of crystalline adenosine (e.g., extremely low absorption in mid-IR spectral range) were observed and attributed to refractive properties of adenosine crystals.
Collapse
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Patrycja Leszczenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewa Sierka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sára Emma Hamplová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Radek Pelc
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 10000 Prague, Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
2
|
Gustafson A, Kahr B. Optical Activity of Nonactin and Its Cation Complexes. Chirality 2024; 36:e23703. [PMID: 39034362 DOI: 10.1002/chir.23703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Nonactin is a non-enantiomorphous (S4 symmetric), optically active natural product with a specific rotation of zero in solutions at all frequencies and temperatures. All optically active, non-enantiomorphous natural products have specific rotations of zero as a consequence of the spatial average of bisignate chiroptical (magnetoelectric or gyration) tensors with equal and opposite eigenvalues. Zeros that arise in the spatial average are distinct in principle, though not necessarily in practice, from zeros that arise in optical inactivity-chiroptical tensors with zero values for all elements as in centric molecules. Nonactin would be measurably optically active when oriented. The anisotropy of the optical activity of nonactin and its cation complexes, likewise S4 symmetric, are studied here by computation to emphasize the infelicitous linkage between optical activity and chirality. Computations show that changes in the conformation of the nonactin macrocycle upon complexation principally are responsible for diminishing the computed optical activity; the metals are incidental.
Collapse
Affiliation(s)
- Afton Gustafson
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| |
Collapse
|
3
|
Sburlati S, Gustafson A, Kahr B. Comparative rotatory power of bent and twisted polyynes. Chirality 2023; 35:838-845. [PMID: 37226985 DOI: 10.1002/chir.23579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
Linear polyynes of the formula C18 H2 (symmetry D∞h ) were bent in silico by progressively introducing CCC angles less than 180°. The bent structures (symmetry C2v ) were then twisted by introducing torsion angles across the CCCC segments by as much as 60°. The gyration tensors of these 19 structures (linear, bent, and twisted) were computed by linear response methods. Bending is massively generative of optical activity in oriented structures, even achiral structures, whereas twisting in conjunction with bending, serves to linearize the molecules and diminish maximally observable optical activity. This computational exercise is intended to unbind the infelicitous linkage of optical activity and chirality, which is only meaningful in isotropic media. Although bent structures are not optically active in solution-the spatial average of the optical activity is necessarily zero-solution measurements that deliver the spatial averages are a special class of measurements, albeit the overwhelmingly most common chiroptical measurements, that prejudice our common understanding of how π-conjugated structures generate gyration. Bending is far more effective than twisting at generating optical activity along some directions for oriented structures. The respective contributions from the transition electric dipole-magnetic dipole polarizability and the transition electric dipole-electric quadrupole polarizability are compared.
Collapse
Affiliation(s)
- Sophia Sburlati
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| | - Afton Gustafson
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, New York City, New York, USA
| |
Collapse
|
4
|
Jähnigen S. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angew Chem Int Ed Engl 2023; 62:e202303595. [PMID: 37071543 DOI: 10.1002/anie.202303595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Chirality is a curious phenomenon that appears in various forms. While the concept of molecular (RS-)chirality is ubiquitous in chemistry, there are also more intricate forms of structural chirality. One of them is the enantiomorphism of crystals, especially molecular crystals, that describes the lack of mirror symmetry in the unit cell. Its relation to molecular chirality is not obvious, but still an open question, which can be addressed with chiroptical tools. Vibrational circular dichroism (VCD) denotes chiral infrared (IR) spectroscopy that is susceptible to both, the molecular as well as the intermolecular space by means of vibrational transitions. When carried out in the solid state, VCD delivers a very rich set of non-local contributions that are determined by crystal packing and collective motion. Since its discovery in the 1970s, VCD has become the method of choice for the determination of absolute configurations, but its applicability reaches beyond towards the study of different crystal forms and polymorphism. This brief review summarises the theoretical concepts of crystal chirality and how computations of solid-state VCD can shed light into the intimate connection of chiral structure and vibrational optical activity.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
5
|
Martin AT, Nichols SM, Murphy VL, Kahr B. Chiroptical anisotropy of crystals and molecules. Chem Commun (Camb) 2021; 57:8107-8120. [PMID: 34322691 DOI: 10.1039/d1cc00991e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical activity, a foundational part of chemistry, is not restricted to chiral molecules although generations have been instructed otherwise. A more inclusive view of optical activity is valuable because it clarifies structure-property relationships however, this view only comes into focus in measurements of oriented molecules, commonly found in crystals. Unfortunately, measurements of optical rotatory dispersion or circular dichroism in anisotropic single crystals have challenged scientists for more than two centuries. New polarimetric methods for unpacking the optical activity of crystals in general directions are still needed. Such methods are reviewed as well as some of the 'nourishment' they provide, thereby inviting to new researchers. Methods for fitting intensity measurements in terms of the constitutive tensor that manifests as the differential refraction and absorption of circularly polarized light, are described, and examples are illustrated. Single oriented molecules, as opposed to single oriented crystals, can be treated computationally. Structure-property correlations for such achiral molecules with comparatively simple electronic structures are considered as a heuristic foundation for the response of crystals that may be subject to measurement.
Collapse
Affiliation(s)
- Alexander T Martin
- Department of Chemistry and Molecular Design Institute, New York University, New York City, NY 10003, USA.
| | | | | | | |
Collapse
|
6
|
Hesser M, Thursch LJ, Lewis TR, Lima TA, Alvarez NJ, Schweitzer-Stenner R. Concentration Dependence of a Hydrogel Phase Formed by the Deprotonation of the Imidazole Side Chain of Glycylhistidylglycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6935-6946. [PMID: 34077210 DOI: 10.1021/acs.langmuir.1c00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Upon deprotonation of its imidazole group at ∼pH 6, the unblocked tripeptide glycylhistidylglycine (GHG) self-assembles into very long crystalline fibrils on a 10-1000 μm scale which are capable of forming a volume spanning network, that is, hydrogel. The critical peptide concentration for self-assembly at a pH of 6 lies between 50 and 60 mM. The fraction of peptides that self-assemble into fibrils depends on the concentration of deprotonated GHG. While IR spectra seem to indicate the formation of fibrils with standard amyloid fibril β-sheet structures, vibrational circular dichroism spectra show a strongly enhanced amide I' signal, suggesting that the formed fibrils exhibit significant chirality. The fibril chirality appears to be a function of peptide concentration. Rheological measurements reveal that the rate of gelation is concentration-dependent and that there is an optimum gel strength at intermediate peptide concentrations of ca. 175 mM. This paper outlines the unique properties of the GHG gel phase which is underlain by a surprisingly dense fibril network with an exceptionally strong modulus that make them potential additives for biomedical applications.
Collapse
Affiliation(s)
- Morgan Hesser
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Lavenia J Thursch
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Todd R Lewis
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Thamires A Lima
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|