1
|
Lee K, Lee J, Park S, Kim WY. Facilitating Transition State Search with Minimal Conformational Sampling Using Reaction Graph. J Chem Theory Comput 2025; 21:2487-2500. [PMID: 39998320 DOI: 10.1021/acs.jctc.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Elucidating transition states (TSs) is crucial for understanding chemical reactions. The reliability of traditional TS search approaches depends on input conformations that require significant effort to prepare. Previous automated methods for generating input reaction conformations typically involve extensive exploration of a large conformational space. Such exhaustive search can be complicated by the rapid growth of the conformational space, especially for reactions involving many rotatable bonds, multiple reacting molecules, and numerous bond formations and dissociations. To address this problem, we propose a new approach that generates reaction conformations for TS searches with minimal reliance on sampling. This method constructs a pseudo-TS structure based on a reaction graph containing bond formation and dissociation information and modifies it to produce reactant and product conformations. Tested on three different benchmarks, our method consistently generated suitable conformations without necessitating extensive sampling, demonstrating its potential to significantly improve the applicability of automated TS searches. This approach offers a valuable tool for a broad range of applications such as reaction mechanism analysis and network exploration.
Collapse
Affiliation(s)
- Kyunghoon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinwon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Shinyoung Park
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Spiekermann KA, Dong X, Menon A, Green WH, Pfeifle M, Sandfort F, Welz O, Bergeler M. Accurately Predicting Barrier Heights for Radical Reactions in Solution Using Deep Graph Networks. J Phys Chem A 2024; 128:8384-8403. [PMID: 39298746 DOI: 10.1021/acs.jpca.4c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Quantitative estimates of reaction barriers and solvent effects are essential for developing kinetic mechanisms and predicting reaction outcomes. Here, we create a new data set of 5,600 unique elementary radical reactions calculated using the M06-2X/def2-QZVP//B3LYP-D3(BJ)/def2-TZVP level of theory. A conformer search is done for each species using TPSS/def2-TZVP. Gibbs free energies of activation and of reaction for these radical reactions in 40 common solvents are obtained using COSMO-RS for solvation effects. These balanced reactions involve the elements H, C, N, O, and S, contain up to 19 heavy atoms, and have atom-mapped SMILES. All transition states are verified by an intrinsic reaction coordinate calculation. We next train a deep graph network to directly estimate the Gibbs free energy of activation and of reaction in both gas and solution phases using only the atom-mapped SMILES of the reactant and product and the SMILES of the solvent. This simple input representation avoids computationally expensive optimizations for the reactant, transition state, and product structures during inference, making our model well-suited for high-throughput predictive chemistry and quickly providing information for (retro-)synthesis planning tools. To properly measure model performance, we report results on both interpolative and extrapolative data splits and also compare to several baseline models. During training and testing, the data set is augmented by including the reverse direction of each reaction and variants with different resonance structures. After data augmentation, we have around 2 million entries to train the model, which achieves a testing set mean absolute error of 1.16 kcal mol-1 for the Gibbs free energy of activation in solution. We anticipate this model will accelerate predictions for high-throughput screening to quickly identify relevant reactions in solution, and our data set will serve as a benchmark for future studies.
Collapse
Affiliation(s)
- Kevin A Spiekermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaorui Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angiras Menon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Pfeifle
- BASF Digital Solutions GmbH, Ludwigshafen am Rhein 67061, Germany
| | - Frederik Sandfort
- BASF SE, Scientific Modeling, Group Research, Ludwigshafen am Rhein 67056, Germany
| | - Oliver Welz
- BASF SE, Scientific Modeling, Group Research, Ludwigshafen am Rhein 67056, Germany
| | - Maike Bergeler
- BASF SE, Scientific Modeling, Group Research, Ludwigshafen am Rhein 67056, Germany
| |
Collapse
|
3
|
Nakatsuka S, Akiyama S, Harabuchi Y, Maeda S, Nagata Y. Tetraborylation of p-Benzynes Generated by the Masamune-Bergman Cyclization through Reaction Design Based on the Reaction Path Network. JACS AU 2024; 4:2578-2584. [PMID: 39055142 PMCID: PMC11267532 DOI: 10.1021/jacsau.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Designing the reactant molecule of an initial reaction, based on quantum chemical pathway exploration, enabled us to access a new reaction, i.e., the tetraborylation reaction of p-benzynes generated from 1,2-diethynylbenzene derivatives, using bis(pinacolato)diborane(4) (B2pin2). Based on the reaction path network generated via the artificial-force-induced reaction (AFIR) method, desired and undesired paths were identified and used to modify the chemical structure of the reactant. After the in silico screening, the optimal structure of the reactant was determined to be a 1,2-diethynylbenzene derivative with a butylene linker. The reaction of the optimized reactant and its derivatives with an excess of B2pin2 gave the tetraborylated products in good yields (up to 58%). It is quite intriguing that the two carbons of p-benzyne behave formally as dicarbenes in this reaction.
Collapse
Affiliation(s)
- Soichiro Nakatsuka
- ERATO
Maeda Artificial Intelligence in Chemical Reaction Design and Discovery
Project, JST, Sapporo 060-0810, Hokkaido, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Hokkaido, Japan
| | - Seiji Akiyama
- ERATO
Maeda Artificial Intelligence in Chemical Reaction Design and Discovery
Project, JST, Sapporo 060-0810, Hokkaido, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yu Harabuchi
- ERATO
Maeda Artificial Intelligence in Chemical Reaction Design and Discovery
Project, JST, Sapporo 060-0810, Hokkaido, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Satoshi Maeda
- ERATO
Maeda Artificial Intelligence in Chemical Reaction Design and Discovery
Project, JST, Sapporo 060-0810, Hokkaido, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Hokkaido, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
- Research
and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan
| | - Yuuya Nagata
- ERATO
Maeda Artificial Intelligence in Chemical Reaction Design and Discovery
Project, JST, Sapporo 060-0810, Hokkaido, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
4
|
Steiner M, Reiher M. A human-machine interface for automatic exploration of chemical reaction networks. Nat Commun 2024; 15:3680. [PMID: 38693117 PMCID: PMC11063077 DOI: 10.1038/s41467-024-47997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Autonomous reaction network exploration algorithms offer a systematic approach to explore mechanisms of complex chemical processes. However, the resulting reaction networks are so vast that an exploration of all potentially accessible intermediates is computationally too demanding. This renders brute-force explorations unfeasible, while explorations with completely pre-defined intermediates or hard-wired chemical constraints, such as element-specific coordination numbers, are not flexible enough for complex chemical systems. Here, we introduce a STEERING WHEEL to guide an otherwise unbiased automated exploration. The STEERING WHEEL algorithm is intuitive, generally applicable, and enables one to focus on specific regions of an emerging network. It also allows for guiding automated data generation in the context of mechanism exploration, catalyst design, and other chemical optimization challenges. The algorithm is demonstrated for reaction mechanism elucidation of transition metal catalysts. We highlight how to explore catalytic cycles in a systematic and reproducible way. The exploration objectives are fully adjustable, allowing one to harness the STEERING WHEEL for both structure-specific (accurate) calculations as well as for broad high-throughput screening of possible reaction intermediates.
Collapse
Affiliation(s)
- Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Kopp WA, Huang C, Zhao Y, Yu P, Schmalz F, Krep L, Leonhard K. Automatic Potential Energy Surface Exploration by Accelerated Reactive Molecular Dynamics Simulations: From Pyrolysis to Oxidation Chemistry. J Phys Chem A 2023; 127:10681-10692. [PMID: 38059461 DOI: 10.1021/acs.jpca.3c05253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Automatic potential energy surface (PES) exploration is important to a better understanding of reaction mechanisms. Existing automatic PES mapping tools usually rely on predefined knowledge or computationally expensive on-the-fly quantum-chemical calculations. In this work, we have developed the PESmapping algorithm for discovering novel reaction pathways and automatically mapping out the PES using merely one starting species is present. The algorithm explores the unknown PES by iteratively spawning new reactive molecular dynamics (RMD) simulations for species that it has detected within previous RMD simulations. We have therefore extended the RMD simulation tool ChemTraYzer2.1 (Chemical Trajectory Analyzer, CTY) for this PESmapping algorithm. It can generate new seed species, automatically start replica simulations for new pathways, and stop the simulation when a reaction is found, reducing the computational cost of the algorithm. To explore PESs with low-temperature reactions, we applied the acceleration method collective variable (CV)-driven hyperdynamics. This involved the development of tailored CV templates, which are discussed in this study. We validate our approach for known pathways in various pyrolysis and oxidation systems: hydrocarbon isomerization and dissociation (C4H7 and C8H7 PES), mostly dominant at high temperatures and low-temperature oxidation of n-butane (C4H9O2 PES) and cyclohexane (C6H11O2 PES). As a result, in addition to new pathways showing up in the simulations, common isomerization and dissociation pathways were found very fast: for example, 44 reactions of butenyl radicals including major isomerizations and decompositions within about 30 min wall time and low-temperature chemistry such as the internal H-shift of RO2 → QO2H within 1 day wall time. Last, we applied PESmapping to the oxidation of the recently proposed biohybrid fuel 1,3-dioxane and validated that the tool could be used to discover new reaction pathways of larger molecules that are of practical use.
Collapse
Affiliation(s)
- Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Yuqing Zhao
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Peiyang Yu
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
6
|
Hayashi H, Maeda S, Mita T. Quantum chemical calculations for reaction prediction in the development of synthetic methodologies. Chem Sci 2023; 14:11601-11616. [PMID: 37920348 PMCID: PMC10619630 DOI: 10.1039/d3sc03319h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Quantum chemical calculations have been used in the development of synthetic methodologies to analyze the reaction mechanisms of the developed reactions. Their ability to estimate chemical reaction pathways, including transition state energies and connected equilibria, has led researchers to embrace their use in predicting unknown reactions. This perspective highlights strategies that leverage quantum chemical calculations for the prediction of reactions in the discovery of new methodologies. Selected examples demonstrate how computation has driven the development of unknown reactions, catalyst design, and the exploration of synthetic routes to complex molecules prior to often laborious, costly, and time-consuming experimental investigations.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
7
|
Zádor J, Martí C, Van de Vijver R, Johansen SL, Yang Y, Michelsen HA, Najm HN. Automated Reaction Kinetics of Gas-Phase Organic Species over Multiwell Potential Energy Surfaces. J Phys Chem A 2023; 127:565-588. [PMID: 36607817 DOI: 10.1021/acs.jpca.2c06558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Automation of rate-coefficient calculations for gas-phase organic species became possible in recent years and has transformed how we explore these complicated systems computationally. Kinetics workflow tools bring rigor and speed and eliminate a large fraction of manual labor and related error sources. In this paper we give an overview of this quickly evolving field and illustrate, through five detailed examples, the capabilities of our own automated tool, KinBot. We bring examples from combustion and atmospheric chemistry of C-, H-, O-, and N-atom-containing species that are relevant to molecular weight growth and autoxidation processes. The examples shed light on the capabilities of automation and also highlight particular challenges associated with the various chemical systems that need to be addressed in future work.
Collapse
Affiliation(s)
- Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | | | - Sommer L Johansen
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Yoona Yang
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Hope A Michelsen
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder80309, Colorado, United States
| | - Habib N Najm
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| |
Collapse
|
8
|
Mita T, Takano H, Hayashi H, Kanna W, Harabuchi Y, Houk KN, Maeda S. Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets. J Am Chem Soc 2022; 144:22985-23000. [PMID: 36451276 DOI: 10.1021/jacs.2c09830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Pericyclic reactions, which involve cyclic concerted transition states without ionic or radical intermediates, have been extensively studied since their definition in the 1960s, and the famous Woodward-Hoffmann rules predict their stereoselectivity and chemoselectivity. Here, we describe the application of a fully automated reaction-path search method, that is, the artificial force induced reaction (AFIR), to trace an input compound back to reasonable starting materials through thermally allowed pericyclic reactions via product-based quantum-chemistry-aided retrosynthetic analysis (QCaRA) without using any a priori experimental knowledge. All categories of pericyclic reactions, including cycloadditions, ene reactions, group-transfer, cheletropic, electrocyclic, and sigmatropic reactions, were successfully traced back via concerted reaction pathways, and starting materials were computationally obtained with the correct stereochemistry. Furthermore, AFIR was used to predict whether the identified reaction pathway can be expected to occur in good yield relative to other possible reactions of the identified starting material. In order to showcase its practical utility, this state-of-the-art technology was also applied to the retrosynthetic analysis of a natural product with a relatively high number of atoms (52 atoms: endiandric acid C methyl ester), which was first synthesized by Nicolaou in 1982 and provided the corresponding starting polyenes with the correct stereospecificity via three pericyclic reaction cascades (one Diels-Alder reaction as well as 6π and 8π electrocyclic reactions). Moreover, not only systems that obey the Woodward-Hoffmann rules but also systems that violate these rules, such as those recently calculated by Houk, can be retrosynthesized accurately.
Collapse
Affiliation(s)
- Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - K N Houk
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
9
|
Hashemi A, Bougueroua S, Gaigeot MP, Pidko EA. ReNeGate: A Reaction Network Graph-Theoretical Tool for Automated Mechanistic Studies in Computational Homogeneous Catalysis. J Chem Theory Comput 2022; 18:7470-7482. [PMID: 36321652 DOI: 10.1021/acs.jctc.2c00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exploration of the chemical reaction space of chemical transformations in multicomponent mixtures is one of the main challenges in contemporary computational chemistry. To remove expert bias from mechanistic studies and to discover new chemistries, an automated graph-theoretical methodology is proposed, which puts forward a network formalism of homogeneous catalysis reactions and utilizes a network analysis tool for mechanistic studies. The method can be used for analyzing trajectories with single and multiple catalytic species and can provide unique conformers of catalysts including multinuclear catalyst clusters along with other catalytic mixture components. The presented three-step approach has the integrated ability to handle multicomponent catalytic systems of arbitrary complexity (mixtures of reactants, catalyst precursors, ligands, additives, and solvents). It is not limited to predefined chemical rules, does not require prealignment of reaction mixture components consistent with a reaction coordinate, and is not agnostic to the chemical nature of transformations. Conformer exploration, reactive event identification, and reaction network analysis are the main steps taken for identifying the pathways in catalytic systems given the starting precatalytic reaction mixture as the input. Such a methodology allows us to efficiently explore catalytic systems in realistic conditions for either previously observed or completely unknown reactive events in the context of a network representing different intermediates. Our workflow for the catalytic reaction space exploration exclusively focuses on the identification of thermodynamically feasible conversion channels, representative of the (secondary) catalyst deactivation or inhibition paths, which are usually most difficult to anticipate based solely on expert chemical knowledge. Thus, the expert bias is sought to be removed at all steps, and the chemical intuition is limited to the choice of the thermodynamic constraint imposed by the applicable experimental conditions in terms of threshold energy values for allowed transformations. The capabilities of the proposed methodology have been tested by exploring the reactivity of Mn complexes relevant for catalytic hydrogenation chemistry to verify previously postulated activation mechanisms and unravel unexpected reaction channels relevant to rare deactivation events.
Collapse
Affiliation(s)
- Ali Hashemi
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sana Bougueroua
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
10
|
Lavigne C, Gomes G, Pollice R, Aspuru-Guzik A. Guided discovery of chemical reaction pathways with imposed activation. Chem Sci 2022; 13:13857-13871. [PMID: 36544742 PMCID: PMC9710306 DOI: 10.1039/d2sc05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Computational power and quantum chemical methods have improved immensely since computers were first applied to the study of reactivity, but the de novo prediction of chemical reactions has remained challenging. We show that complex reaction pathways can be efficiently predicted in a guided manner using chemical activation imposed by geometrical constraints of specific reactive modes, which we term imposed activation (IACTA). Our approach is demonstrated on realistic and challenging chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural product, a water-mediated Michael addition, and several oxidative addition reactions of complex drug-like molecules. Notably and in contrast with traditional hand-guided computational chemistry calculations, our method requires minimal human involvement and no prior knowledge of the products or the associated mechanisms. We believe that IACTA will be a transformational tool to screen for chemical reactivity and to study both by-product formation and decomposition pathways in a guided way.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada
| | - Gabe Gomes
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada,Department of Chemical Engineering & Applied Chemistry, University of Toronto200 College St.OntarioM5S 3E5Canada,Department of Materials Science & Engineering, University of Toronto184 College St.OntarioM5S 3E4Canada,Vector Institute for Artificial Intelligence661 University Ave Suite 710TorontoOntarioM5G 1M1Canada,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR)661 University AveTorontoOntarioM5GCanada
| |
Collapse
|
11
|
Zhao Q, Savoie BM. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces. Angew Chem Int Ed Engl 2022; 61:e202210693. [PMID: 36074520 PMCID: PMC9827825 DOI: 10.1002/anie.202210693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Algorithmic reaction exploration based on transition state searches has already made inroads into many niche applications, but its potential as a general-purpose tool is still largely unrealized. Computational cost and the absence of benchmark problems involving larger molecules remain obstacles to further progress. Here an ultra-low cost exploration algorithm is implemented and used to explore the reactivity of unimolecular and bimolecular reactants, comprising a total of 581 reactions involving 51 distinct reactants. The algorithm discovers all established reaction pathways, where such comparisons are possible, while also revealing a much richer reactivity landscape, including lower barrier reaction pathways and a strong dependence of reaction conformation in the apparent barriers of the reported reactions. The diversity of these benchmarks illustrate that reaction exploration algorithms are approaching general-purpose capability.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| | - Brett M. Savoie
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
12
|
Spiekermann KA, Pattanaik L, Green WH. Fast Predictions of Reaction Barrier Heights: Toward Coupled-Cluster Accuracy. J Phys Chem A 2022; 126:3976-3986. [PMID: 35727075 DOI: 10.1021/acs.jpca.2c02614] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quantitative estimates of reaction barriers are essential for developing kinetic mechanisms and predicting reaction outcomes. However, the lack of experimental data and the steep scaling of accurate quantum calculations often hinder the ability to obtain reliable kinetic values. Here, we train a directed message passing neural network on nearly 24,000 diverse gas-phase reactions calculated at CCSD(T)-F12a/cc-pVDZ-F12//ωB97X-D3/def2-TZVP. Our model uses 75% fewer parameters than previous studies, an improved reaction representation, and proper data splits to accurately estimate performance on unseen reactions. Using information from only the reactant and product, our model quickly predicts barrier heights with a testing MAE of 2.6 kcal mol-1 relative to the coupled-cluster data, making it more accurate than a good density functional theory calculation. Furthermore, our results show that future modeling efforts to estimate reaction properties would significantly benefit from fine-tuning calibration using a transfer learning technique. We anticipate this model will accelerate and improve kinetic predictions for small molecule chemistry.
Collapse
Affiliation(s)
- Kevin A Spiekermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lagnajit Pattanaik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Eisenstein O. From the Felkin‐Anh Rule to the Grignard Reaction: an Almost Circular 50 Year Adventure in the World of Molecular Structures and Reaction Mechanisms with Computational Chemistry**. Isr J Chem 2022. [DOI: 10.1002/ijch.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Odile Eisenstein
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095 France Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo Oslo 0315 Norway
| |
Collapse
|
14
|
Green WH. Concluding Remarks on Faraday Discussion on Unimolecular Reactions. Faraday Discuss 2022; 238:741-766. [DOI: 10.1039/d2fd00136e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Faraday Discussion, marking the centenary of Lindemann’s explanation of the pressure-dependence of unimolecular reactions, presented recent advances in measuring and computing collisional energy transfer efficiencies, microcanonical rate coefficients, pressure-dependent...
Collapse
|
15
|
F L, HEMERYCK A, Landa G, Brut M. Enhancing DFT-based energy landscape exploration by coupling Quantum Mechanics and Static Modes. Phys Chem Chem Phys 2022; 24:12011-12026. [DOI: 10.1039/d1cp03562b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unravelling the atomic scale diffusion that can occur at the surface, at the interface or into the bulk is challenging: multi-scale modelling approach usually requires intensive prospective calculations and moreover...
Collapse
|
16
|
Klippenstein SJ. Spiers Memorial Lecture: theory of unimolecular reactions. Faraday Discuss 2022; 238:11-67. [DOI: 10.1039/d2fd00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One hundred years ago, at an earlier Faraday Discussion meeting, Lindemann presented a mechanism that provides the foundation for contemplating the pressure dependence of unimolecular reactions. Since that time, our...
Collapse
|
17
|
Zhao Q, Savoie BM. Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks. NATURE COMPUTATIONAL SCIENCE 2021; 1:479-490. [PMID: 38217124 DOI: 10.1038/s43588-021-00101-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/18/2021] [Indexed: 01/15/2024]
Abstract
Automated reaction prediction has the potential to elucidate complex reaction networks for applications ranging from combustion to materials degradation, but computational cost and inconsistent reaction coverage are still obstacles to exploring deep reaction networks. Here we show that cost can be reduced and reaction coverage can be increased simultaneously by relatively straightforward modifications of the reaction enumeration, geometry initialization and transition state convergence algorithms that are common to many prediction methodologies. These components are implemented in the context of yet another reaction program (YARP), our reaction prediction package with which we report reaction discovery benchmarks for organic single-step reactions, thermal degradation of a γ-ketohydroperoxide, and competing ring-closures in a large organic molecule. Compared with recent benchmarks, YARP (re)discovers both established and unreported reaction pathways and products while simultaneously reducing the cost of reaction characterization by nearly 100-fold and increasing convergence of transition states. This combination of ultra-low cost and high reaction coverage creates opportunities to explore the reactivity of larger systems and more complex reaction networks for applications such as chemical degradation, where computational cost is a bottleneck.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Maeda S, Harabuchi Y. Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
- National Institute for Materials Science (NIMS) Research and Services Division of Materials Data and Integrated System (MaDIS) Tsukuba Ibaraki Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
| |
Collapse
|
19
|
Naz EG, Paranjothy M. Unimolecular Dissociation of γ-Ketohydroperoxide via Direct Chemical Dynamics Simulations. J Phys Chem A 2020; 124:8120-8127. [DOI: 10.1021/acs.jpca.0c06211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erum Gull Naz
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| |
Collapse
|
20
|
Yoshida Y, Yokoi H, Sato H. Energy landscape study of water splitting and H
2
evolution at a ruthenium(
II
) pincer complex. J Comput Chem 2020; 41:2240-2250. [DOI: 10.1002/jcc.26385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yuichiro Yoshida
- Department of Molecular Engineering, Graduate School of EngineeringKyoto University Kyoto Japan
| | - Hayato Yokoi
- Department of Molecular Engineering, Graduate School of EngineeringKyoto University Kyoto Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of EngineeringKyoto University Kyoto Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto Japan
- Fukui Institute for Fundamental ChemistryKyoto University Kyoto Japan
| |
Collapse
|
21
|
Coley CW, Eyke NS, Jensen KF. Autonomous Discovery in the Chemical Sciences Part I: Progress. Angew Chem Int Ed Engl 2020; 59:22858-22893. [DOI: 10.1002/anie.201909987] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Connor W. Coley
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Natalie S. Eyke
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
22
|
Coley CW, Eyke NS, Jensen KF. Autonome Entdeckung in den chemischen Wissenschaften, Teil I: Fortschritt. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Connor W. Coley
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Natalie S. Eyke
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
23
|
Mita T, Harabuchi Y, Maeda S. Discovery of a synthesis method for a difluoroglycine derivative based on a path generated by quantum chemical calculations. Chem Sci 2020; 11:7569-7577. [PMID: 34094133 PMCID: PMC8159455 DOI: 10.1039/d0sc02089c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced 'quantum chemistry aided retrosynthetic analysis' (QCaRA), which uses quantum chemical calculations to search systematically for the decomposition paths of a target product and proposes a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the most promising path chosen by an organic chemist among the predicted paths led to the discovery of a synthesis method for a difluoroglycine derivative. We emphasize that the purpose of this study is not to propose a fully automated workflow. Therefore, the extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.
Collapse
Affiliation(s)
- Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan .,JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan .,JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan.,Department of Chemistry, Faculty of Science, Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan.,JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan .,JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan.,Department of Chemistry, Faculty of Science, Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
24
|
Sumiya Y, Maeda S. Rate Constant Matrix Contraction Method for Systematic Analysis of Reaction Path Networks. CHEM LETT 2020. [DOI: 10.1246/cl.200092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yosuke Sumiya
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- National Institute for Materials Science (NIMS), Research and Services Division of Materials Data and Integrated System (MaDIS), Tsukuba, Ibaraki 305-0044, Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
25
|
Abstract
Modern computational chemistry has reached a stage at which massive exploration into chemical reaction space with unprecedented resolution with respect to the number of potentially relevant molecular structures has become possible. Various algorithmic advances have shown that such structural screenings must and can be automated and routinely carried out. This will replace the standard approach of manually studying a selected and restricted number of molecular structures for a chemical mechanism. The complexity of the task has led to many different approaches. However, all of them address the same general target, namely to produce a complete atomistic picture of the kinetics of a chemical process. It is the purpose of this overview to categorize the problems that should be targeted and to identify the principal components and challenges of automated exploration machines so that the various existing approaches and future developments can be compared based on well-defined conceptual principles.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratory for Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory for Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
26
|
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
27
|
Artificial Force-Induced Reaction Method for Systematic Elucidation of Mechanism and Selectivity in Organometallic Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Schlexer Lamoureux P, Winther KT, Garrido Torres JA, Streibel V, Zhao M, Bajdich M, Abild‐Pedersen F, Bligaard T. Machine Learning for Computational Heterogeneous Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900595] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philomena Schlexer Lamoureux
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Kirsten T. Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Jose Antonio Garrido Torres
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Verena Streibel
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Meng Zhao
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Frank Abild‐Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| | - Thomas Bligaard
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
| |
Collapse
|