1
|
Giarrusso S, Gori-Giorgi P, Agostini F. Electronic Vector Potential from the Exact Factorization of a Complex Wavefunction. Chemphyschem 2024; 25:e202400127. [PMID: 38837609 DOI: 10.1002/cphc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
We generalize the definitions of local scalar potentials namedυ kin ${\upsilon _{{\rm{kin}}} }$ andυ N - 1 ${\upsilon _{N - 1} }$ , which are relevant to properly describe phenomena such as molecular dissociation with density-functional theory, to the case in which the electronic wavefunction corresponds to a complex current-carrying state. In such a case, an extra term in the form of a vector potential appears which cannot be gauged away. Both scalar and vector potentials are introduced via the exact factorization formalism which allows us to express the given Schrödinger equation as two coupled equations, one for the marginal and one for the conditional amplitude. The electronic vector potential is directly related to the paramagnetic current density carried by the total wavefunction and to the diamagnetic current density in the equation for the marginal amplitude. An explicit example of this vector potential in a triplet state of two non-interacting electrons is showcased together with its associated circulation, giving rise to a non-vanishing geometric phase. Some connections with the exact factorization for the full molecular wavefunction beyond the Born-Oppenheimer approximation are also discussed.
Collapse
Affiliation(s)
- Sara Giarrusso
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV, Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ, Schiphol, The Netherlands
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
2
|
Paul née Matveeva R, Folkestad SD, Sannes BS, Høyvik IM. Particle-Breaking Unrestricted Hartree-Fock Theory for Open Molecular Systems. J Phys Chem A 2024; 128:1533-1542. [PMID: 38351699 PMCID: PMC10910564 DOI: 10.1021/acs.jpca.3c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
We recently introduced the particle-breaking restricted Hartree-Fock (PBRHF) model, a mean-field approach to address the fractional charging of molecules when they interact with an electronic environment. In this paper, we present an extension of the model referred to as particle-breaking unrestricted Hartree-Fock (PBUHF). The unrestricted formulation contains odd-electron states necessary for a realistic description of fractional charging. Within the PBUHF parametrization, we use two-body operators as they yield convenient operator transformations. However, two-body operators can change only the particle number by two. Therefore, we include noninteracting zero-energy bath orbitals to generate a linear combination of even and odd electron states. Depending on whether the occupied or virtual orbitals of a molecule interact with the environment, the average number of electrons is either decreased or increased. Without interaction, PBUHF reduces to the unrestricted Hartree-Fock wave function.
Collapse
Affiliation(s)
- Regina Paul née Matveeva
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Sarai Dery Folkestad
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Bendik Støa Sannes
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ida-Marie Høyvik
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
3
|
Hellgren M, Baguet L. Strengths and limitations of the adiabatic exact-exchange kernel for total energy calculations. J Chem Phys 2023; 158:2889488. [PMID: 37158324 DOI: 10.1063/5.0146423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
We investigate the adiabatic approximation to the exact-exchange kernel for calculating correlation energies within the adiabatic-connection fluctuation-dissipation framework of time-dependent density functional theory. A numerical study is performed on a set of systems having bonds of different character (H2 and N2 molecules, H-chain, H2-dimer, solid-Ar, and the H2O-dimer). We find that the adiabatic kernel can be sufficient in strongly bound covalent systems, yielding similar bond lengths and binding energies. However, for non-covalent systems, the adiabatic kernel introduces significant errors around equilibrium geometry, systematically overestimating the interaction energy. The origin of this behavior is investigated by studying a model dimer composed of one-dimensional, closed-shell atoms, interacting via soft-Coulomb potentials. The kernel is shown to exhibit a strong frequency dependence at small to intermediate atomic separation that affects both the low-energy spectrum and the exchange-correlation hole obtained from the corresponding diagonal of the two-particle density matrix.
Collapse
Affiliation(s)
- Maria Hellgren
- Sorbonne Université, MNHN, UMR CNRS 7590, IMPMC, 4 place Jussieu, 75005 Paris, France
| | - Lucas Baguet
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| |
Collapse
|
4
|
Huan Lew-Yee JF, Piris M, Del Campo JM. Outstanding improvement in removing the delocalization error by global natural orbital functional. J Chem Phys 2023; 158:084110. [PMID: 36859086 DOI: 10.1063/5.0137378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work assesses the performance of the recently proposed global natural orbital functional (GNOF) against the charge delocalization error. GNOF provides a good balance between static and dynamic electronic correlations leading to accurate total energies while preserving spin, even for systems with a highly multi-configurational character. Several analyses were applied to the functional, namely, (i) how the charge is distributed in super-systems of two fragments, (ii) the stability of ionization potentials while increasing the system size, and (iii) potential energy curves of a neutral and charged diatomic system. GNOF was found to practically eliminate the charge delocalization error in many of the studied systems or greatly improve the results obtained previously with PNOF7.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
| | - Mario Piris
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain; and Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Euskadi, Spain
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
| |
Collapse
|
5
|
Lew-Yee JFH, M. del Campo J. Charge delocalization error in Piris Natural Orbital Functionals. J Chem Phys 2022; 157:104113. [DOI: 10.1063/5.0102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Piris Natural Orbital Functionals (PNOF) have been recognized as a low-scaling alternative to study strong correlated systems. In this work, we address the performance of the fifth functional (PNOF5) and the seventh functional (PNOF7) to deal with another common problem, the charge delocalization error. The effects of this problem can be observed in charged systems of repeated well-separated fragments, where the energy should be the sum of the charged and neutral fragments, regardless of how the charge is distributed. In practice, an energetic overstabilization of fractional charged fragments leads to a preference for having the charge delocalized throughout the system. To establish the performance of PNOF functionals regarding charge delocalization error, charged chains of helium atoms and the W4-17-MR set molecules were used as base fragments and their energy, charge distribution and correlation regime were studied. It was found that PNOF5 prefers localized charge distributions, while PNOF7 improves the treatment of interpair static correlation and tends to the correct energetic limit for several cases, although a preference for delocalized charge distributions may arise in highly strong correlation regimes. Overall, it is concluded that PNOF functionals can simultaneously deal with static correlation and charge delocalization errors, resulting in a promising choice to study charge-related problems.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México Facultad de Química, Mexico
| | - Jorge M. del Campo
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
6
|
De Vriendt X, Lemmens L, De Baerdemacker S, Bultinck P, Acke G. Quantifying Delocalization and Static Correlation Errors by Imposing (Spin)Population Redistributions through Constraints on Atomic Domains. J Chem Theory Comput 2021; 17:6808-6818. [PMID: 34597030 DOI: 10.1021/acs.jctc.1c00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The failure of many density functional approximations can be traced to their behavior under fractional (spin)population redistributions in the asymptotic limit toward infinite bonding distances, which should obey the flat-plane conditions. However, such errors can only be characterized sufficiently in terms of those redistributions if exact energies are available for many possible (spin)population redistributions at different bonding distances. In this study, we propose to model such redistributions by imposing (spin)populations on atomic domains by constraining full configuration interaction wave functions. The resulting N-representable descriptions of small hydrogen chains at different bonding distances allow us to computationally illustrate the effects of the flat-plane conditions in the limit to infinite bond distances, leading to more chemical insight into those flat-plane conditions. As the proposed methodology is able to capture the effects of the flat plane conditions, it could be used to generate the reference data that is required to measure the extent to which approximate methods violate the requirements of the exact functional, leading to a quantification of the delocalization and static correlation error of such methods.
Collapse
Affiliation(s)
- Xeno De Vriendt
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Laurent Lemmens
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Stijn De Baerdemacker
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Gibney D, Boyn JN, Mazziotti DA. Toward a Resolution of the Static Correlation Problem in Density Functional Theory from Semidefinite Programming. J Phys Chem Lett 2021; 12:385-391. [PMID: 33356286 DOI: 10.1021/acs.jpclett.0c03371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kohn-Sham density functional theory (DFT) has long struggled with the accurate description of strongly correlated and open shell systems, and improvements have been minor even in the newest hybrid functionals. In this Letter we treat the static correlation in DFT when frontier orbitals are degenerate by the means of using a semidefinite programming (SDP) approach to minimize the system energy as a function of the N-representable, non-idempotent 1-electron reduced density matrix. While showing greatly improved singlet-triplet gaps for local density approximation and generalized gradient approximation (GGA) functionals, the SDP procedure reveals flaws in modern meta and hybrid GGA functionals, which show no major improvements when provided with an accurate electron density.
Collapse
Affiliation(s)
- Daniel Gibney
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Gould T, Vuckovic S. Range-separation and the multiple radii functional approximation inspired by the strongly interacting limit of density functional theory. J Chem Phys 2019; 151:184101. [DOI: 10.1063/1.5125692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia
| | - Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
9
|
Mordovina U, Reinhard TE, Theophilou I, Appel H, Rubio A. Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations. J Chem Theory Comput 2019; 15:5209-5220. [PMID: 31490684 PMCID: PMC6785802 DOI: 10.1021/acs.jctc.9b00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/29/2022]
Abstract
In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn-Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn-Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy.
Collapse
Affiliation(s)
- Uliana Mordovina
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Teresa E. Reinhard
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Iris Theophilou
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Heiko Appel
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|