1
|
Ugandi M, Roemelt M. Analytical SA-HCISCF Nuclear Gradients from Spin-Adapted Heat-Bath Configuration Interaction. J Chem Theory Comput 2025; 21:3930-3944. [PMID: 40193170 PMCID: PMC12020362 DOI: 10.1021/acs.jctc.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
This work reports an implementation of the analytical nuclear gradients and nonadiabatic couplings with state-averaged SCF wave functions from a spin-pure selected configuration interaction (SCI) method. At the core of the implementation lies the evaluation of the Lagrange multipliers required for the variational calculation of the nuclear gradient. Using the same code infrastructure, we developed a fully CI-coupled second-order orbital optimization method. Both the calculation of the nuclear gradient and the second-order orbital optimization make use of density fitting in order to accelerate the calculation of the two-electron integrals. We demonstrate the use of analytical nuclear gradients in excited-state geometry optimizations for conjugated molecules. In addition, the first triplet excited-state geometry of a transition-metal catalyst, Fe(PDI), was optimized with up to 30 orbitals in the active space. Our results outline the capabilities of the implemented methods as well as directions for future work.
Collapse
Affiliation(s)
- Mihkel Ugandi
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin D-12489, Germany
| | - Michael Roemelt
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin D-12489, Germany
| |
Collapse
|
2
|
Atalar K, Rath Y, Crespo-Otero R, Booth GH. Fast and accurate nonadiabatic molecular dynamics enabled through variational interpolation of correlated electron wavefunctions. Faraday Discuss 2024; 254:542-569. [PMID: 39136121 DOI: 10.1039/d4fd00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
We build on the concept of eigenvector continuation to develop an efficient multi-state method for the rigorous and smooth interpolation of a small training set of many-body wavefunctions through chemical space at mean-field cost. The inferred states are represented as variationally optimal linear combinations of the training states transferred between the many-body bases of different nuclear geometries. We show that analytic multi-state forces and nonadiabatic couplings from the model enable application to nonadiabatic molecular dynamics, developing an active learning scheme to ensure a compact and systematically improvable training set. This culminates in application to the nonadiabatic molecular dynamics of a photoexcited 28-atom hydrogen chain, with surprising complexity in the resulting nuclear motion. With just 22 DMRG calculations of training states from the low-energy correlated electronic structure at different geometries, we infer the multi-state energies, forces and nonadiabatic coupling vectors at 12 000 geometries with provable convergence to high accuracy along an ensemble of molecular trajectories, which would not be feasible with a brute force approach. This opens up a route to bridge the timescales between accurate single-point correlated electronic structure methods and timescales of relevance for photo-induced molecular dynamics.
Collapse
Affiliation(s)
- Kemal Atalar
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| | - Yannic Rath
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Rachel Crespo-Otero
- Department of Chemistry University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - George H Booth
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
3
|
King DS, Truhlar DG, Gagliardi L. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2023; 19:8118-8128. [PMID: 37905518 DOI: 10.1021/acs.jctc.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The selection of an adequate set of active orbitals for modeling strongly correlated electronic states is difficult to automate because it is highly dependent on the states and molecule of interest. Although many approaches have shown some success, no single approach has worked well in all cases. In light of this, we present the "discrete variational selection" (DVS) approach to active space selection, in which one generates multiple trial wave functions from a diverse set of systematically constructed active spaces and then selects between these wave functions variationally. We apply this DVS approach to 207 vertical excitations of small-to-medium-sized organic and inorganic molecules (with 3 to 18 atoms) in the QUESTDB database by (i) constructing various sets of active space orbitals through diagonalization of parametrized operators and (ii) choosing the result with the lowest average energy among the states of interest. This approach proves ineffective when variationally selecting between wave functions using the density matrix renormalization group (DMRG) or complete active space self-consistent field (CASSCF) energy but is able to provide good results when variationally selecting between wave functions using the energy of the translated PBE (tPBE) functional from multiconfiguration pair-density functional theory (MC-PDFT). Applying this DVS-tPBE approach to selection among state-averaged DMRG wave functions, we obtain a mean unsigned error of only 0.17 eV using hybrid MC-PDFT. This result matches that of our previous benchmark without the need to filter out poor active spaces and with no further orbital optimization following active space selection of the SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly and effectively select between the new SA-DMRG wave functions and our previous SA-CASSCF results.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Group, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Coe JP. Analytic Non-adiabatic Couplings for Selected Configuration Interaction via Approximate Degenerate Coupled Perturbed Hartree-Fock. J Chem Theory Comput 2023; 19:8053-8065. [PMID: 37939698 PMCID: PMC10687870 DOI: 10.1021/acs.jctc.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
We use degenerate perturbation theory and assume that for degenerate pairs of orbitals, the coupled perturbed Hartree-Fock coefficients are symmetric in the degenerate basis to show [Formula: see text] is the only modification needed in the original molecular orbital basis. This enables us to develop efficient and accurate analytic nonadiabatic couplings between electronic states for selected configuration interactions (CIs). Even when the states belong to different irreducible representations, degenerate orbital pairs cannot be excluded by symmetry. For various excited states of carbon monoxide and trigonal planar ammonia, we benchmark the method against the full CI and find it to be accurate. We create a semi-numerical approach and use it to show that the analytic approach is correct even when a high-symmetry structure is distorted to break symmetry so that near degeneracies in orbitals occur. For a range of geometries of trigonal planar ammonia, we find that the analytic non-adiabatic couplings for selected CI can achieve sufficient accuracy using a small fraction of the full CI space.
Collapse
Affiliation(s)
- Jeremy P. Coe
- Institute of Chemical Sciences, School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
5
|
Iino T, Shiozaki T, Yanai T. Algorithm for analytic nuclear energy gradients of state averaged DMRG-CASSCF theory with newly derived coupled-perturbed equations. J Chem Phys 2023; 158:054107. [PMID: 36754810 DOI: 10.1063/5.0130636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present an algorithm for evaluating analytic nuclear energy gradients of the state-averaged density matrix renormalization group complete-active-space self-consistent field (SA-DMRG-CASSCF) theory based on the newly derived coupled-perturbed (CP) DMRG-CASSCF equations. The Lagrangian for the conventional SA-CASSCF analytic gradient theory is extended to the SA-DMRG-CASSCF variant that can fully consider a whole set of constraints on the parameters of multi-root canonical matrix product states formed at all the DMRG block configurations. An efficient algorithm to solve the CP-DMRG-CASSCF equations for determining the multipliers was developed. The complexity of the resultant analytic gradient algorithm is overall the same as that of the unperturbed SA-DMRG-CASSCF algorithm. In addition, a reduced-scaling approach was developed to directly compute the SA reduced density matrices (SA-RDMs) and their perturbed ones without calculating separate state-specific RDMs. As part of our implementation scheme, we neglect the term associated with the constraint on the active orbitals in terms of the active-active rotation in the Lagrangian. Thus, errors from the true analytic gradients may be caused in this scheme. The proposed gradient algorithm was tested with the spin-adapted implementation by checking how accurately the computed analytic energy gradients reproduce numerical gradients of the SA-DMRG-CASSCF energies using a common number of renormalized bases. The illustrative applications show that the errors are sufficiently small when using a typical number of the renormalized bases, which is required to attain adequate accuracy in DMRG's total energies.
Collapse
Affiliation(s)
- Tsubasa Iino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Toru Shiozaki
- Quantum Simulation Technologies, Inc., Boston, Massachusetts 02135, USA
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
6
|
Abstract
We develop analytic gradients for selected configuration interaction wave functions. Despite all pairs of molecular orbitals now potentially having to be considered for the coupled perturbed Hartree-Fock equations, we show that degenerate orbital pairs belonging to different irreducible representations in the largest abelian subgroup do not need to be included and instabilities due to degeneracies are avoided. We introduce seminumerical gradients and use them to validate the analytic approach even when near degeneracies are present due to high-symmetry geometries being slightly distorted to break symmetry. The method is applied to carbon monoxide, ammonia, square planar H4, hexagonal planar H6, and methane for a range of bond lengths where we demonstrate that analytic gradients for selected configuration interaction can approach the quality of full configuration interaction yet only use a very small fraction of its determinants.
Collapse
|
7
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
8
|
Smith JET, Lee J, Sharma S. Near-Exact Nuclear Gradients of Complete Active Space Self-Consistent Field Wave Functions. J Chem Phys 2022; 157:094104. [DOI: 10.1063/5.0085515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper, we study the nuclear gradients of heat bath configuration interaction self-consistent field (HCISCF) wave functions and use them to optimize molecular geometries for various molecules.We show that the HCISCF nuclear gradients are fairly insensitive to the size of the "selected" variational space, which allows us to reduce the computational cost without introducing significant error.The ability of HCISCF to treat larger active spaces combined with the flexibility for users to control the computational cost makes the method very attractive for studying strongly correlated systems which require a larger active space than possible with complete active space self-consistent field (CASSCF).Finally, we study the realistic catalyst, Fe(PDI), and highlight some of the challenges this system poses for density functional theory (DFT).We demonstrate how HCISCF can clarify the energetic stability of geometries obtained from DFT when the results are strongly dependent on the functional.We also use the HCISCF gradients to optimize geometries for this species and study the adiabatic singlet-triplet gap. During geometry optimization, we find that multiple near-degenerate local minima exist on the triplet potential energy surface.
Collapse
Affiliation(s)
- James E. T. Smith
- Center for Computational Quantum Phyics, Flatiron Institute, United States of America
| | - Joonho Lee
- Chemistry, Columbia University Department of Chemistry, United States of America
| | - Sandeep Sharma
- University of Colorado at Boulder, United States of America
| |
Collapse
|
9
|
Freitag L, Baiardi A, Knecht S, González L. Simplified State Interaction for Matrix Product State Wave Functions. J Chem Theory Comput 2021; 17:7477-7485. [PMID: 34860525 PMCID: PMC8675135 DOI: 10.1021/acs.jctc.1c00674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present an approximation
to the state-interaction approach for
matrix product state (MPS) wave functions (MPSSI) in a nonorthogonal
molecular orbital basis, first presented by Knecht et al. [J. Chem. Theory Comput.,2016, 28, 5881], that allows for a significant reduction of the computational
cost without significantly compromising its accuracy. The approximation
is well-suited if the molecular orbital basis is close to orthogonality,
and its reliability may be estimated a priori with a single numerical
parameter. For an example of a platinum azide complex, our approximation
offers up to 63-fold reduction in computational time compared to the
original method for wave function overlaps and spin–orbit couplings,
while still maintaining numerical accuracy.
Collapse
Affiliation(s)
- Leon Freitag
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 17, 1090 Vienna, Austria
| | - Alberto Baiardi
- Laboratory for Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefan Knecht
- GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
| | - Leticia González
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 17, 1090 Vienna, Austria
| |
Collapse
|
10
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
11
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
12
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
13
|
Park JW. Near-Exact CASSCF-Level Geometry Optimization with a Large Active Space using Adaptive Sampling Configuration Interaction Self-Consistent Field Corrected with Second-Order Perturbation Theory (ASCI-SCF-PT2). J Chem Theory Comput 2021; 17:4092-4104. [PMID: 34096306 DOI: 10.1021/acs.jctc.1c00272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An accurate description of electron correlation is one of the most challenging problems in quantum chemistry. The exact electron correlation can be obtained by means of full configuration interaction (FCI). A simple strategy for approximating FCI at a reduced computational cost is selected CI (SCI), which diagonalizes the Hamiltonian within only the chosen configuration space. Recovery of the contributions of the remaining configurations is possible with second-order perturbation theory. Here, we apply adaptive sampling configuration interaction (ASCI) combined with molecular orbital optimizations (ASCI-SCF) corrected with second-order perturbation theory (ASCI-SCF-PT2) for geometry optimization by implementing the analytical nuclear gradient algorithm for ASCI-PT2 with the Z-vector (Lagrangian) formalism. We demonstrate that for phenalenyl radicals and anthracene, optimized geometries and the number of unpaired electrons can be obtained at nearly the CASSCF accuracy by incorporating PT2 corrections and extrapolating them. We demonstrate the current algorithm's utility for optimizing the equilibrium geometries and electronic structures of six-ring-fused polycyclic aromatic hydrocarbons and 4-periacene.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
14
|
Li Y, Lu J. Optimal Orbital Selection for Full Configuration Interaction (OptOrbFCI): Pursuing the Basis Set Limit under a Budget. J Chem Theory Comput 2020; 16:6207-6221. [DOI: 10.1021/acs.jctc.0c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yingzhou Li
- Department of Mathematics, Duke University, Durham, North Carolina 27708, United States
| | - Jianfeng Lu
- Department of Mathematics, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Khokhlov D, Belov A. Ab Initio Study of Low-Lying Excited States of Carotenoid-Derived Polyenes. J Phys Chem A 2020; 124:5790-5803. [PMID: 32573233 DOI: 10.1021/acs.jpca.0c01678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Knowledge about excited states of carotenoids is essential for understanding photophysical processes underlying photosynthesis. However, due to the presence of a large number of optically dark states, experimental study of the excited-state manifold is limited to a significant extent. In this paper, we apply high-level ab initio quantum chemical methods to study the low-lying excited states of polyenes containing from 8 to 13 conjugated double bonds, which serve as a model for natural carotenoids. Vertical and adiabatic excitation energies from the ground 1Ag- state to the excited 2Ag-, 1Bu+, and 1Bu- states were evaluated by means of density matrix renormalization group (DMRG) with NEVPT2 perturbative correction. The energies of all excited states are highly sensitive to nuclear geometry, especially the 2Ag- state. Thus, the 2Ag- and 1Bu+ states interchange their relative positions upon geometry relaxation, while the vertical excitation energy to the 2Ag- state is rather high. At the same time, the 1Bu- state energy is shown to be higher than other studied excited states at any geometry. With relaxed geometries of the excited states, absorption and transient absorption spectra were calculated within the Franck-Condon approximation bridging the gap between experimental spectroscopic data and computational results.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
16
|
Aquilante F, Autschbach J, Baiardi A, Battaglia S, Borin VA, Chibotaru LF, Conti I, De Vico L, Delcey M, Fdez Galván I, Ferré N, Freitag L, Garavelli M, Gong X, Knecht S, Larsson ED, Lindh R, Lundberg M, Malmqvist PÅ, Nenov A, Norell J, Odelius M, Olivucci M, Pedersen TB, Pedraza-González L, Phung QM, Pierloot K, Reiher M, Schapiro I, Segarra-Martí J, Segatta F, Seijo L, Sen S, Sergentu DC, Stein CJ, Ungur L, Vacher M, Valentini A, Veryazov V. Modern quantum chemistry with [Open]Molcas. J Chem Phys 2020; 152:214117. [PMID: 32505150 DOI: 10.1063/5.0004835] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
Collapse
Affiliation(s)
- Francesco Aquilante
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, USA
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Mickaël Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Nicolas Ferré
- Aix-Marseille University, CNRS, Institut Chimie Radicalaire, Marseille, France
| | - Leon Freitag
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Xuejun Gong
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Thomas B Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Quan M Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luis Seijo
- Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Christopher J Stein
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Liviu Ungur
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 44300 Nantes, France
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
17
|
Ma Y. Elucidating the multi-configurational character of the firefly dioxetanone anion and its prototypes in the biradical region using full valence active spaces. Phys Chem Chem Phys 2020; 22:4957-4966. [PMID: 32073078 DOI: 10.1039/c9cp06417f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We analyzed the near-degenerate states of the firefly dioxetanone anion (FDO-) and its prototypes, especially in the biradical region, using multi-configurational approaches. The importance of utilizing full valence active spaces by means of density-matrix renormalization group self-consistent field (DMRG-SCF) calculations was described. Our results revealed that the neglect of some valence orbitals can affect the quantitative accuracy in later multi-reference calculations or the qualitative conclusion when optimizing conical intersections. Using all of the relevant valence orbitals of FDO-, we confirmed that there were two conical intersections, as reported in previous work, and that the intersecting states were changed when the active space was enlarged. Beyond these, we found that there were strong interactions between states in the biradical regions, in which the changes in entanglements can be used to visualize the interacting state evolution.
Collapse
Affiliation(s)
- Yingjin Ma
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China. and Center of Scientific Computing Applications & Research, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|