1
|
Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence. Mol Pharm 2024; 21:1563-1590. [PMID: 38466810 DOI: 10.1021/acs.molpharmaceut.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
Collapse
Affiliation(s)
- Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumyadeep Bhaduri
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debraj Das
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Priya Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Kim SY, Park JE, Lee HJ, Sim DY, Ahn CH, Park SY, Shim BS, Kim B, Lee DY, Kim SH. Astragalus membranaceus Extract Induces Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Heat Shock Protein 27 and Androgen Receptor in Prostate Cancers. Int J Mol Sci 2024; 25:2799. [PMID: 38474045 DOI: 10.3390/ijms25052799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Although Astragalus membranaceus is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of Astragalus membranaceus extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of Astragalus membranaceus (WAM) was investigated in prostate cancer cells in association with heat shock protein 27 (HSP27)/androgen receptor (AR) signaling. WAM increased cytotoxicity and the sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP) and cysteine aspartyl-specific protease 3 (caspase 3), and attenuated the expression of B-cell lymphoma 2 (Bcl-2) in LNCaP cells after 24 h of exposure. Consistently, WAM significantly increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive LNCaP cells. WAM decreased the phosphorylation of HSP27 on Ser82 and inhibited the expression of the AR and prostate-specific antigen (PSA), along with reducing the nuclear translocation of p-HSP27 and the AR via the disturbed binding of p-HSP27 with the AR in LNCaP cells. WAM consistently inhibited the expression of the AR and PSA in dihydrotestosterone (DHT)-treated LNCaP cells. WAM also suppressed AR stability, both in the presence and absence of cycloheximide, in LNCaP cells. Taken together, these findings provide evidence that WAM induces apoptosis via the inhibition of HSP27/AR signaling in prostate cancer cells and is a potent anticancer candidate for prostate cancer treatment.
Collapse
Affiliation(s)
- Seok-Young Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Gan X, Liu Y, Wang X. Targeting androgen receptor in glioblastoma. Crit Rev Oncol Hematol 2023; 191:104142. [PMID: 37742885 DOI: 10.1016/j.critrevonc.2023.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Glioblastomas are primary brain tumors that originate from glial stem cells or progenitor cells. There is a large difference in the incidence of glioblastoma between males and females. Studies revealed that the gender differences in the tumor may be attributable to the androgen receptor signaling axis. The incidence rate of glioblastoma in men is higher than that in women. Aberrant activation of the androgen receptor signaling pathway, or interactions between the androgen receptor signaling axis and other signaling axes promote the development of glioblastoma. Therefore, targeting the androgen receptor holds promise as a therapeutic approach for glioblastoma. This review investigates the dynamics of drug research into the treatment of glioblastoma by targeting the androgen receptor. The first finding in line with expectations is that androgen receptor antagonists, represented by enzalutamide, have been studied and shown to have anti-glioblastoma effects. In addition, it was found that the combination of 5-alpha reductase inhibitors and androgen receptor antagonists resulted in better therapeutic outcomes than each of them alone. Similar results were obtained with the combination of an epidermal growth factor receptor inhibitor and an androgen receptor antagonist. In addition, four small molecule compounds have been shown to exert significant anti-glioblastoma effects by directly or indirectly targeting the androgen receptor. Expectantly, one of these small molecules, seviteronel, progressed to the phase II clinical trial stage. These findings suggest that targeting the androgen receptor for glioblastoma may be a promising therapeutic option.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Yonghong Liu
- Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| |
Collapse
|
4
|
Li Y, Orahoske C, Salem F, Johnson A, Tannous C, Devole L, Zhang W, Lathia JD, Wang B, Su B. Lead Optimization of Androgen Receptor-HSP27 Disrupting Agents in Glioblastoma. J Med Chem 2023; 66:5567-5583. [PMID: 37023333 PMCID: PMC11068032 DOI: 10.1021/acs.jmedchem.2c02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor with poor prognosis under the current standard treatment. It is critical to develop new approaches to selectively battle the disease. GBM sex differences suggest that an androgen receptor (AR) is a potential therapeutic target to treat AR-overexpressed GBM. Heat shock 27 kDa protein (HSP27) is a well-documented chaperone protein that stabilizes AR. Inhibition of HSP27 leads to AR degradation, indicating that HSP27 inhibitors could suppress AR activity in GBM. We have identified a lead HSP27 inhibitor that could induce AR degradation. Lead optimization resulted with two new derivatives (compounds 4 and 26) showing potent anti-GBM activity and improved drug distribution in comparison to the lead compound. Compounds 4 and 6 exhibit IC50s of 35 and 23 nM, respectively, to inhibit cell proliferation and also show significant activity to decrease the tumor growth in vivo.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Cody Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Fatma Salem
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Aidyn Johnson
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Christia Tannous
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Lucas Devole
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, and Case Comprehensive Cancer Center, Cleveland, Ohio 44195, United States
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, United States
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Arts and Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| |
Collapse
|
5
|
Parma B, Wurdak H, Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat 2022; 65:100888. [DOI: 10.1016/j.drup.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
6
|
Babi A, Menlibayeva K, Bex T, Doskaliev A, Akshulakov S, Shevtsov M. Targeting Heat Shock Proteins in Malignant Brain Tumors: From Basic Research to Clinical Trials. Cancers (Basel) 2022; 14:5435. [PMID: 36358853 PMCID: PMC9659111 DOI: 10.3390/cancers14215435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 05/03/2024] Open
Abstract
Heat shock proteins (HSPs) are conservative and ubiquitous proteins that are expressed both in prokaryotic and eukaryotic organisms and play an important role in cellular homeostasis, including the regulation of proteostasis, apoptosis, autophagy, maintenance of signal pathways, protection from various stresses (e.g., hypoxia, ionizing radiation, etc.). Therefore, HSPs are highly expressed in tumor cells, including malignant brain tumors, where they also associate with cancer cell invasion, metastasis, and resistance to radiochemotherapy. In the current review, we aimed to assess the diagnostic and prognostic values of HSPs expression in CNS malignancies as well as the novel treatment approaches to modulate the chaperone levels through the application of inhibitors (as monotherapy or in combination with other treatment modalities). Indeed, for several proteins (i.e., HSP10, HSPB1, DNAJC10, HSPA7, HSP90), a direct correlation between the protein level expression and poor overall survival prognosis for patients was demonstrated that provides a possibility to employ them as prognostic markers in neuro-oncology. Although small molecular inhibitors for HSPs, particularly for HSP27, HSP70, and HSP90 families, were studied in various solid and hematological malignancies demonstrating therapeutic potential, still their potential was not yet fully explored in CNS tumors. Some newly synthesized agents (e.g., HSP40/DNAJ inhibitors) have not yet been evaluated in GBM. Nevertheless, reported preclinical studies provide evidence and rationale for the application of HSPs inhibitors for targeting brain tumors.
Collapse
Affiliation(s)
- Aisha Babi
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | | | - Torekhan Bex
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Aidos Doskaliev
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Serik Akshulakov
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
7
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Li Y, Dano R, Li C, Zhang W, Lathia JD, Wang B, Su B. Pharmacokinetic and brain distribution study of an anti-glioblastoma agent in mice by HPLC-MS/MS. Biomed Chromatogr 2022; 36:e5310. [PMID: 34981554 PMCID: PMC9008720 DOI: 10.1002/bmc.5310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Previously compound I showed great anti-glioblastoma activity without toxicity in a mouse xenograft study. In this study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate the pharmacokinetics and brain distribution of compound I in mice. The protein precipitation method was applied to extract the compound from mouse plasma and brain homogenates, and it was then separated using a Kinetex C18 column with a mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v). The analytes were detected with multiple reaction monitoring for the quantitative response of the compounds. The inter- and intra-day precisions were <8.29 and 3.85%, respectively, and the accuracy range was within ±7.33%. The method was successfully applied to evaluate the pharmacokinetics of compound I in mouse plasma and brain tissue. The peak concentration in plasma was achieved within 1 h. The apparent elimination half-life was 4.06 h. The peak concentration of compound I in brain tissue was 0.88 μg/g. The results indicated that compound I was rapidly distributed and could cross the blood-brain barrier. The pharmacokinetic profile summarized provides valuable information for the further investigation of compound I as a potential anti-glioblastoma agent.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Raina Dano
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Cathy Li
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Justin D. Lathia
- Department of Molecular Medicine, Lerner Research Institute, Cleveland Clinic, and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
9
|
Xu P, Ge R. Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem 2022; 230:114118. [DOI: 10.1016/j.ejmech.2022.114118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
|
10
|
Zhao N, Wang F, Ahmed S, Liu K, Zhang C, Cathcart SJ, DiMaio DJ, Punsoni M, Guan B, Zhou P, Wang S, Batra SK, Bronich T, Hei TK, Lin C, Zhang C. Androgen Receptor, Although Not a Specific Marker For, Is a Novel Target to Suppress Glioma Stem Cells as a Therapeutic Strategy for Glioblastoma. Front Oncol 2021; 11:616625. [PMID: 34094902 PMCID: PMC8175980 DOI: 10.3389/fonc.2021.616625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Targeting androgen receptor (AR) has been shown to be promising in treating glioblastoma (GBM) in cell culture and flank implant models but the mechanisms remain unclear. AR antagonists including enzalutamide are available for treating prostate cancer patients in clinic and can pass the blood-brain barrier, thus are potentially good candidates for GBM treatment but have not been tested in GBM orthotopically. Our current studies confirmed that in patients, a majority of GBM tumors overexpress AR in both genders. Enzalutamide inhibited the proliferation of GBM cells both in vitro and in vivo. Although confocal microscopy demonstrated that AR is expressed but not specifically in glioma cancer stem cells (CSCs) (CD133+), enzalutamide treatment significantly decreased CSC population in cultured monolayer cells and spheroids, suppressed tumor sphere-forming capacity of GBM cells, and downregulated CSC gene expression at mRNA and protein levels in a dose- and time-dependent manner. We have, for the first time, demonstrated that enzalutamide treatment decreased the density of CSCs in vivo and improved survival in an orthotopic GBM mouse model. We conclude that AR antagonists potently target glioma CSCs in addition to suppressing the overall proliferation of GBM cells as a mechanism supporting their repurposing for clinical applications treating GBM.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fei Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shaheen Ahmed
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kan Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sahara J Cathcart
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael Punsoni
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bingjie Guan
- Department of Radiation Oncology, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Ping Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuo Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tom K Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Chi Lin
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Zhang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|