1
|
Wang J, Wang N, Wang M, Liu N, Wang C, Li N, Mu L, Jiang Y, Chen J, Li J, Yang G, Wang J, Liu S, Zhang K. Discovery of novel sitolactone derivative leading to PANoptosis and differentiation of acute myeloid leukemia cells. Eur J Med Chem 2025; 288:117360. [PMID: 39983554 DOI: 10.1016/j.ejmech.2025.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Acute Myeloid Leukemia (AML) is a devastating hematologic malignancy. Chemotherapy remains the primary treatment, offering rapid disease control and potential complete remission. However, more than half of the patients develop resistance and relapse, significantly reducing patient survival. Research has shown that drug-resistance and recurrence of AML are closely linked to leukemic stemness. Consequently, discovering new anti-Leukemia stem cell (LSC) compounds is a promising strategy for the treatment of AML in clinic. Additionally, the recent focus on inducing non-apoptotic programmed cell death in AML cells presents an alternative direction for therapeutic drug development, targeting current anti-apoptotic pathways. In this study, novel Sitolactone analogues, potential anti-LSCs compounds, were designed and synthesized based on the "biomimetic design" strategy. Compound 42 was found to significantly inhibit proliferation of AML cells. Subsequent biological evaluation revealed that this compound not only reduced the population of LSCs but also effectively induced PANoptosis in AML cells. Given the active compound's poor water solubility, a prodrug modification strategy was employed to enhance in vivo delivery with superior oral bioavailability and PK properties. This approach significantly suppressed AML cell growth in a mouse orthotropic model with favorable in vivo tolerance.
Collapse
Affiliation(s)
- Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China
| | - Ning Wang
- Center for Drug Evaluation, Shaanxi Medical Products Administration, Xi'an, Shaanxi, 710065, PR China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Mengmeng Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Chenyang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Linrong Mu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yurui Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Jia Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Jinxiao Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| | - Junfeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Shuangwei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Wang M, Zhao JH, Tang MX, Li M, Zhao H, Li ZY, Liu AD. Cell Death Modalities in Therapy of Melanoma. Int J Mol Sci 2025; 26:3475. [PMID: 40331942 PMCID: PMC12026598 DOI: 10.3390/ijms26083475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Melanoma, one of the most lethal cancers, demands urgent and effective treatment strategies. However, a successful therapeutic approach requires a precise understanding of the mechanisms underlying melanoma initiation and progression. This review provides an overview of melanoma pathogenesis, identifies current pathogenic factors contributing to mortality, and explores targeted therapy and checkpoint inhibitor therapy. Furthermore, we examine melanoma classification and corresponding therapies, along with advancements in various cell death mechanisms for melanoma treatment. We also discuss the current treatment status along with some drawbacks encountered during research stages such as resistance and metastasis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Jia-Hui Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Ming-Xuan Tang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Meng Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Dong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Liu Y, Zhou Q, Huo Y, Sun X, Hu J. Recent advances in developing modified C14 side chain pleuromutilins as novel antibacterial agents. Eur J Med Chem 2024; 269:116313. [PMID: 38503168 DOI: 10.1016/j.ejmech.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.
Collapse
Affiliation(s)
- Yue Liu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Qinjiang Zhou
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yiwen Huo
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiujuan Sun
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinxing Hu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
5
|
Dong L, Vargas CPD, Tian X, Chu X, Yin C, Wong A, Yang Y. Harnessing the Potential of Non-Apoptotic Cell Death Processes in the Treatment of Drug-Resistant Melanoma. Int J Mol Sci 2023; 24:10376. [PMID: 37373523 DOI: 10.3390/ijms241210376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is a highly malignant skin cancer that is known for its resistance to treatments. In recent years, there has been significant progress in the study of non-apoptotic cell death, such as pyroptosis, ferroptosis, necroptosis, and cuproptosis. This review provides an overview of the mechanisms and signaling pathways involved in non-apoptotic cell death in melanoma. This article explores the interplay between various forms of cell death, including pyroptosis, necroptosis, ferroptosis, and cuproptosis, as well as apoptosis and autophagy. Importantly, we discuss how these non-apoptotic cell deaths could be targeted as a promising therapeutic strategy for the treatment of drug-resistant melanoma. This review provides a comprehensive overview of non-apoptotic processes and gathers recent experimental evidence that will guide future research and eventually the creation of treatment strategies to combat drug resistance in melanoma.
Collapse
Affiliation(s)
- Linyinxue Dong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | | | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Xiayu Chu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Chenqi Yin
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Aloysius Wong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
- School of Natural Sciences, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| |
Collapse
|
6
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
7
|
Li N, Li C, Zhang J, Jiang Q, Wang Z, Nie S, Gao Z, Li G, Fang H, Ren S, Li X. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition. Chem Biol Interact 2022; 366:110172. [PMID: 36096161 DOI: 10.1016/j.cbi.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
The hallmark of ovarian cancer is its high mortality rate attributed to the existence of cancer stem cells (CSCs) subpopulations which result in therapy recurrence and metastasis. A series of C-29-substituted and/or different A/B ring of celastrol derivatives were synthesized and displayed potential inhibition against ovarian cancer cells SKOV3, A2780 and OVCAR3. Among them, compound 6c exhibited the most potent anti-proliferative activity and selectivity, gave superior anti-CSC effects through inhibition of the sphere formation and downregulation of the percentage of CD44+CD24- and ALDH+ cells. Further mechanism research demonstrated that compound 6c could attenuate the expression of STAT3 and p-STAT3. The results suggested that the inhibition of celastrol derivative 6c on ovarian cancer cells may be related to resistance to cancer stem-like characters and regulation of STAT3 pathway.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Chaobo Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Juan Zhang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Qian Jiang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhaoxue Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shaozhen Nie
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhenzhen Gao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Guangyao Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Xiaojing Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
Zhang K, Liang J, Wang N, Li N, Jiang Y, Li X, Yang C, Zhou H, Yang G. Discovery of a Novel Pleuromutilin derivative as Anti-IPF lead compound via high-throughput assay. Eur J Med Chem 2022; 241:114643. [DOI: 10.1016/j.ejmech.2022.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
|
9
|
Niu Z, Wang X, Xu Y, Li Y, Gong X, Zeng Q, Zhang B, Xi J, Pei X, Yue W, Han Y. Development and Validation of a Novel Survival Model for Cutaneous Melanoma Based on Necroptosis-Related Genes. Front Oncol 2022; 12:852803. [PMID: 35387121 PMCID: PMC8979066 DOI: 10.3389/fonc.2022.852803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background Necroptosis is crucial for organismal development and pathogenesis. To date, the role of necroptosis in skin cutaneous melanoma (SKCM) is yet unveiled. In addition, the part of melanin pigmentation was largely neglected in the bioinformatic analysis. In this study, we aimed to construct a novel prognostic model based on necroptosis-related genes and analysis the pigmentation phenotype of patients to provide clinically actionable information for SKCM patients. Methods We downloaded the SKCM data from the TCGA and GEO databases in this study and identified the differently expressed and prognostic necroptosis-related genes. Patients’ pigmentation phenotype was evaluated by the GSVA method. Then, using Lasso and Cox regression analysis, a novel prognostic model was constructed based on the intersected genes. The risk score was calculated and the patients were divided into two groups. The survival differences between the two groups were compared using Kaplan-Meier analysis. The ROC analysis was performed and the area under curves was calculated to evaluate the prediction performances of the model. Then, the GO, KEGG and GSEA analyses were performed to elucidate the underlying mechanisms. Differences in the tumor microenvironment, patients’ response to immune checkpoint inhibitors (ICIs) and pigmentation phenotype were analyzed. In order to validate the mRNA expression levels of the selected genes, quantitative real-time PCR (qRT-PCR) was performed. Results Altogether, a novel prognostic model based on four genes (BOK, CD14, CYLD and FASLG) was constructed, and patients were classified into high and low-risk groups based on the median risk score. Low-risk group patients showed better survival status. The model showed high accuracy in the training and the validation cohort. Pathway and functional enrichment analysis indicated that immune-related pathways were differently activated in the two groups. In addition, immune cells infiltration patterns and sensitivity of ICIs showed a significant difference between patients from two risk groups. The pigmentation score was positively related to the risk score in pigmentation phenotype analysis. Conclusion In conclusion, this study established a novel prognostic model based on necroptosis-related genes and revealed the possible connections between necroptosis and melanin pigmentation. It is expected to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Department of Ophthalmology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Gong
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
A Novel Necroptosis-Related miRNA Signature for Predicting the Prognosis of Breast Cancer Metastasis. DISEASE MARKERS 2022; 2022:3391878. [PMID: 35371342 PMCID: PMC8975690 DOI: 10.1155/2022/3391878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Objective Necroptosis was recently identified as a form of programmed cell death that plays an essential role in breast cancer metastasis. MicroRNAs (miRNAs) have long been recognized to affect cell death and tumor growth. In this study, we aimed to screen for necroptosis-associated miRNAs that predict breast cancer metastasis. Method This study used The Cancer Genome Atlas (TCGA) public database to obtain miRNA expression data and associated clinical data from breast cancer patients and then retrieved miRNA data related to necrosis and apoptosis. Next, using Cox regression model analysis (univariate or multivariate) as well as a comparison analysis (differential analysis), a prognostic multi-miRNA molecular marker was established. Finally, prognosis-related miRNAs were utilized to identify target genes, and the functions of the target genes were analyzed for enrichment to investigate the probable mechanisms of the miRNAs. Results Ten miRNAs were screened through differential analysis to build models: hsa-miR-148a-3p, hsa-miR-223-3p, hsa-miR-331-3p, has-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-181c-5p, hsa-miR-181d-5p, hsa-miR-200a-5p, hsa-miR-141-3p, and hsa-miR-425-5p. The multivariate Cox regression model was an independent prognostic factor (univariate Cox regression results: HR = 3.2642, 95%CI = 1.5773 − 6.7554, P = 0.0014; multivariate Cox regression results: HR = 3.1578, 95%CI = 1.5083 − 6, P = 0.0023). The survival curve of the risk score also revealed that patients with a high risk score had a poor prognosis (P = 2e − 04). The receiver operating characteristic (ROC) curve showed that the model has a certain prediction ability. Batch survival analysis of the miRNAs in the model was conducted and showed that hsa-miR-331-3p (P = 0.0182) was strongly associated with prognosis. Twenty-three predicted target genes were obtained, and Gene Ontology (GO) enrichment analysis showed that these target genes were strongly enriched in transcriptional initiation and cell membrane trafficking. Conclusion Our research identified a novel miRNA marker for predicting breast cancer patient prognosis and lays the groundwork for future research on necroptosis-related genes.
Collapse
|