1
|
Qu Y, Gao C, Li R, Wu Y, Kong H, Li Y, Li D, Ampomah-Wireko M, Wang YN, Zhang E. Synthesis and antimicrobial evaluation of novel quaternary quinolone derivatives with low toxicity and anti-biofilm activity. Eur J Med Chem 2025; 291:117591. [PMID: 40186892 DOI: 10.1016/j.ejmech.2025.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
To overcome the increasing global drug resistance, the development of novel antimicrobial drugs is a top priority in the fight against multidrug resistant (MDR) and persistent bacteria. In this work, we report the synthesis of novel single quaternary quinolone antibacterial agents. The majority of the tested compounds exhibited significant antimicrobial efficacy against Gram-negative pathogens (E. coli and S. maltophilia). Notably, the selected compound (4e) was highly inhibitory with a MIC value of 0.25 μg/mL against E. coli. Additionally, compound 4e demonstrated excellent stability in complex biological fluids with low hemolytic activity (HC50 > 1280 μg/mL) and a significantly lower propensity to induce bacterial resistance. Encouragingly, 4e showed not only rapid bactericidal activity and inhibition of bacterial biofilms, but also low toxicity to erythrocytes and RAW 264.7 cells compared to the clinical drug ciprofloxacin. Mechanism studies have found that compound 4e has a relatively weak destructive effect on the cell membrane of E. coli. However, it can effectively inhibit the activity of glutathione (GSH), promote the massive accumulation of intracellular reactive oxygen species (ROS), and then disrupt the antioxidant defense system of bacteria, achieving a bactericidal effect. In addition, compound 4e has a certain binding effect with bacterial DNA.
Collapse
Affiliation(s)
- Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuequan Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuanbo Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Daran Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ya-Na Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
2
|
Akhtar S, Ansari MM, Verma RD, Sharma J, Gupta A, Dhuriya RK, Verma DP, Saroj J, Ali M, Verma NK, Mitra K, Singh BN, Ghosh JK. Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides. J Med Chem 2025; 68:566-589. [PMID: 39718360 DOI: 10.1021/acs.jmedchem.4c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, "KVLGRLV" human chemerin segment. Herein, we devised a new method of "sliding framework" with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10-16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed in vivo antibacterial and antitubercular efficacies against Escherichia coli ATCC 25922 and Mycobacterium bovis BCG infections, respectively, in a mouse model.
Collapse
Affiliation(s)
- Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rahul Dev Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajendra Kumar Dhuriya
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mehmood Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Bastar, Dharampura-2, Jagdalpur, C.G. 494001, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
4
|
Maji S, Akhtar S, Halder S, Chatterjee I, Verma DP, Verma NK, Saroj J, Saxena D, Maitra R, Sharma J, Sharma B, Sakurai H, Mitra K, Chopra S, Ghosh JK, Panda G. Corannulene Amino Acid-Derived Water-Soluble Amphiphilic Buckybowls as Broad-Spectrum Membrane Targeting Antibacterial Agents. J Med Chem 2024; 67:15041-15060. [PMID: 39213648 DOI: 10.1021/acs.jmedchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To date, the use of corannulene has been restricted in the area of material science, but its application in biomedical research has yet to be established due to its nonsolubility in an aqueous environment and synthetic infeasibility. Herein, we detail the development of a new family of highly curved π-conjugated corannulene-containing unnatural α-amino acid (CAA) derivatives to overcome this challenge. These CAAs have been extended as novel constituents for the synthesis of corannulene-containing water-soluble cationic peptides (CCPs), which display inhibitory activity against broad-spectrum pathogenic bacteria along with drug-resistant bacteria via a membrane-damaging mechanism. Importantly, several of the synthesized peptides were found to be appreciably nonhemolytic against hRBCs and noncytotoxic against mammalian 3T3 cells. In vivo efficacy studies of the potent and least cytotoxic peptide 6a demonstrated clearance of bacteria from the spleen, liver, lung, and blood of mice infected with S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Saroj Maji
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Sabyasachi Halder
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Indranil Chatterjee
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Dharampura, Jagdalpur 494001, Chhattisgarh, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Rahul Maitra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawana Sharma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics 2024; 16:1098. [PMID: 39204443 PMCID: PMC11360180 DOI: 10.3390/pharmaceutics16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antibiotic resistance poses a serious threat to public health globally, reducing the effectiveness of conventional antibiotics in treating bacterial infections. ESKAPE pathogens are a group of highly transmissible bacteria that mainly contribute to the spread of antibiotic resistance and cause significant morbidity and mortality in humans. Phylloseptins, a class of antimicrobial peptides (AMPs) derived from Phyllomedusidae frogs, have been proven to have antimicrobial activity via membrane interaction. However, their relatively high cytotoxicity and low stability limit the clinical development of these AMPs. This project aims to study the antimicrobial activity and mechanisms of a phylloseptin-like peptide, phylloseptin-TO2 (PSTO2), following rational amino acid modification. Here, PSTO2 (FLSLIPHAISAVSALAKHL-NH2), identified from the skin secretion of Phyllomedusa tomopterna, was used as the template for modification to enhance antimicrobial activity. Adding positive charges to PSTO2 through substitution with L-lysines enhanced the interaction of the peptides with cell membranes and improved their antimicrobial efficacy. The analogues SRD7 and SR2D10, which incorporated D-lysines, demonstrated significant antimicrobial effects against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) while also showing reduced haemolytic activity and cytotoxicity, resulting in a higher therapeutic index. Additionally, SRD7, modified with D-lysines, exhibited notable anti-proliferative properties against human lung cancer cell lines, including H838 and H460. This study thus provides a potential development model for new antibacterial and anti-cancer drugs combating antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (W.Y.); (J.Y.); (X.L.); (C.M.); (Y.J.); (T.W.); (T.C.); (C.S.); (M.Z.); (L.W.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhen B, Geng C, Yang Y, Liang H, Jiang Y, Li X, Ye G. Systematic alanine and stapling mutational analysis of antimicrobial peptide Chem-KVL. Bioorg Med Chem Lett 2024; 107:129794. [PMID: 38735344 DOI: 10.1016/j.bmcl.2024.129794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Chem-KVL is a tandem repeating peptide, with 14 amino acids that was modified based on a short peptide from a fragment of the human host defense protein chemerin. Chem-KVL increases cationicity and hydrophobicity and shows broad-spectrum antibacterial activity. To determine the molecular determinants of Chem-KVL and whether staple-modified Chem-KVL would improve antibacterial activity and protease stability or decrease cytotoxicity, we combined alanine and stapling scanning, and designed a series of alanine and staple-derived Chem-KVL peptides, termed Chem-A1 to Chem-A14 and SCL-1 to SCL-7. We next examined their antibacterial activity against several gram-positive and gram-negative bacteria, their proteolytic stability, and their cytotoxicity. Ala scanning of Chem-KVL suggested that both the positively charged residues (Lys and Arg) and the hydrophobic residues (Lue and Val) were critical for the antibacterial activities of Chem-KVL peptide. Of note, Chem-A4 was able to remarkably inhibit the growth of gram-positive and gram-negative bacteria when compared to the original peptide. And the antibacterial activities of stapled SCL-4 and SCL-7 were several times higher than those of the linear peptide against gram-positive and gram-negative bacteria. Stapling modification of peptides resulted in increased helicity and protein stability when compared with the linear peptide. These stapled peptides, especially SCL-4 and SCL-7, may serve as the leading compounds for further optimization and antimicrobial therapy.
Collapse
Affiliation(s)
- Borui Zhen
- School of Pharmacy, Dali University, Dali 671000, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Chenchen Geng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yi Yang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Haiyan Liang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | | | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guangming Ye
- Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi 214000, China.
| |
Collapse
|
7
|
Chen S, Qin S, Li R, Qu Y, Ampomah-Wireko M, Nininahazwe L, Wang M, Gao C, Zhang E. Design, synthesis and antibacterial evaluation of low toxicity amphiphilic-cephalosporin derivatives. Eur J Med Chem 2024; 268:116293. [PMID: 38447461 DOI: 10.1016/j.ejmech.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Global public health is facing a serious problem as a result of the rise in antibiotic resistance and the decline in the discovery of new antibiotics. In this study, two series of amphiphilic-cephalosporins were designed and synthesized, several of which showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Structure-activity relationships indicated that the length of the hydrophobic alkyl chain significantly affects the antibacterial activity against Gram-negative bacteria. The best compound 2d showed high activity against drug-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 0.5 and 2-4 μg/mL, respectively. Furthermore, 2d remained active in complex mammalian body fluids and had a longer post-antibiotic effect (PAE) than vancomycin. Mechanism studies indicated that compound 2d lacks membrane-damaging properties and can target penicillin-binding proteins to disrupt bacterial cell wall structure, inhibit the metabolic activity and induce the accumulation of reactive oxygen species (ROS) in bacteria. Compound 2d showed minimal drug resistance and was nontoxic to HUVEC and HBZY-1 cells with CC50 > 128 μg/mL. These findings suggest that 2d is a promising drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
8
|
Tandon A, Harioudh MK, Verma NK, Saroj J, Gupta A, Pant G, Tripathi JK, Kumar A, Kumari T, Tripathi AK, Mitra K, Ghosh JK. Characterization of a Myeloid Differentiation Factor 2-Derived Peptide that Facilitates THP-1 Macrophage-Mediated Phagocytosis of Gram-Negative Bacteria. ACS Infect Dis 2024; 10:845-857. [PMID: 38363869 DOI: 10.1021/acsinfecdis.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Myeloid differentiation factor 2 (MD2), the TLR4 coreceptor, has been shown to possess opsonic activity and has been implicated in phagocytosis and intracellular killing of Gram-negative bacteria. However, any MD2 protein segment involved in phagocytosis of Gram-negative bacteria is not yet known. A short synthetic MD2 segment, MD54 (amino acid regions 54 to 69), was shown to interact with a Gram-negative bacterial outer membrane component, LPS, earlier. Furthermore, the MD54 peptide induced aggregation of LPS and facilitated its internalization in THP-1 cells. Currently, it has been investigated if MD2-derived MD54 possesses any opsonic property and role in phagocytosis of Gram-negative bacteria. Remarkably, we observed that MD54 facilitated agglutination of Gram-negative bacteria, Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC BAA-427), but not of Gram-positive bacteria, Bacillus subtilis (ATCC 6633) and Staphylococcus aureus (ATCC 25923). The MD54-opsonized Gram-negative bacteria internalized within PMA-treated THP-1 cells and were killed over a longer incubation period. However, both internalization and intracellular killing of the MD54-opsonized Gram-negative bacteria within THP-1 phagocytes were appreciably inhibited in the presence of a phagocytosis inhibitor, cytochalasin D. Furthermore, MD54 facilitated the clearance of Gram-negative bacteria E. coli (ATCC 25922) and P. aeruginosa (ATCC BAA-427) from the infected BALB/c mice whereas an MD54 analog, MMD54, was inactive. Overall, for the first time, the results revealed that a short MD2-derived peptide can specifically agglutinate Gram-negative bacteria, act as an opsonin for these bacteria, and facilitate their phagocytosis by THP-1 phagocytes. The results suggest that the MD54 segment could have a crucial role in MD2-mediated host-pathogen interaction involving the Gram-negative bacteria.
Collapse
Affiliation(s)
- Anshika Tandon
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Munesh Kumar Harioudh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jitendra Kumar Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Amit Kumar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Tripti Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Amit Kumar Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
9
|
Ali M, Kumari T, Gupta A, Akhtar S, Verma RD, Ghosh JK. Identification of a 10-mer peptide from the death domain of MyD88 which attenuates inflammation and insulin resistance and improves glucose metabolism. Biochem J 2024; 481:191-218. [PMID: 38224573 DOI: 10.1042/bcj20230369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.
Collapse
Affiliation(s)
- Mehmood Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Tripti Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
| | - Rahul Dev Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| |
Collapse
|
10
|
Tang S, Sun C, He X, Gan W, Wang L, Qiao D, Guan X, Xu S, Zheng P, Zhu W. Design, synthesis, and biological evaluation of 4-(2-fluorophenoxy)-7-methoxyquinazoline derivatives as dual EGFR/c-Met inhibitors for the treatment of NSCLC. Eur J Med Chem 2024; 263:115939. [PMID: 37984296 DOI: 10.1016/j.ejmech.2023.115939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
In non-small cell lung cancer (NSCLC) treatment, aberrant expression of c-mesenchymal-epithelial transition factor (c-Met) has been identified as a driving factor in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance. Unfortunately, none of the EGFR/c-Met dual-target inhibitors have successfully passed clinical trials. Hence, based on molecular docking analysis and combination principles of EGFR and c-Met inhibitors, three series of 4-(2-fluorophenoxy)-7-methoxyquinazoline derivatives as new EGFR/c-Met inhibitors were designed, synthesized, and evaluated for their biological activities. Among these compounds, TS-41 displayed the best inhibitory activity against EGFRL858R and c-Met kinases, with an IC50 value of 68.1 nM and 0.26 nM respectively. Moreover, it also showed excellent inhibitory activity on three NSCLC cell lines A549-P, H1975 and PC-9 with IC50 values ranging from 1.48 to 2.76 μM. Flow cytometry assays demonstrated that TS-41 induced apoptosis and cell cycle arrest of A549-P cells in a concentration-dependent manner, corresponding to JC-1 staining assay results. Western blot analysis revealed that TS-41 significantly downregulated the phosphorylation of EGFR, c-Met, and downstream AKT at molecular level. Importantly, TS-41 exhibited potent in vivo anticancer efficacy in an A549-P-bearing allograft nude mouse model at a dose of 60 mg/kg with a tumor growth inhibition rate of 55.3 % compared with Afatinib (46.4 %), as well as low hemolytic toxicity and organ toxicity. Molecular docking results showed that TS-41 was well embedded into the cavity of EGFR (PDB: 5GMP) and c-Met (PDB: 3LQ8) proteins, respectively. In summary, TS-41 is a high-efficiency and low-toxicity EGFR/c-Met inhibitor for the treatment of NSCLC and is worthy of further exploration.
Collapse
Affiliation(s)
- Sheng Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Chuanchuan Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Xintao He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Wenhui Gan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Xinyu Guan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
11
|
Mao Y, Davis S, Pu L. Regio- and Enantioselective Macrocyclization from Dynamic Imine Formation: Chemo- and Enantioselective Fluorescent Recognition of Lysine. Org Lett 2023; 25:7639-7644. [PMID: 37843813 DOI: 10.1021/acs.orglett.3c02949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The dynamic covalent chemistry of imines is utilized to conduct a regioselective as well as enantioselective synthesis of an unsymmetric (C1) chiral macrocycle from the reaction of an unsymmetric (C1) chiral dialdehyde, (S)-4, that contains a salicylaldehyde unit and a benzaldehyde unit, with lysine, an unsymmetric (C1) chiral diamine. The enantioselectivity is further enhanced in the presence of Zn2+. Compound (S)-4 in combination with Zn2+ is found to be a highly chemoselective as well as enantioselective fluorescent probe for lysine. It can be used to detect specific enantiomers of this amino acid.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Stephanie Davis
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Shleider Carnero Canales C, Marquez Cazorla J, Furtado Torres AH, Monteiro Filardi ET, Di Filippo LD, Costa PI, Roque-Borda CA, Pavan FR. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Pharmaceutics 2023; 15:2409. [PMID: 37896169 PMCID: PMC10610444 DOI: 10.3390/pharmaceutics15102409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a subclinical, asymptomatic mycobacterial state affecting approximately 25% of the global population. The substantial prevalence of LTBI, combined with the risk of progressing to active tuberculosis, underscores its central role in the increasing incidence of tuberculosis (TB). Accurate identification and timely treatment are vital to contain and reduce the spread of the disease, forming a critical component of the global strategy known as "End TB." This review aims to examine and highlight the most recent scientific evidence related to new diagnostic approaches and emerging therapeutic treatments for LTBI. While prevalent diagnostic methods include the tuberculin skin test (TST) and interferon gamma release assay (IGRA), WHO's approval of two specific IGRAs for Mycobacterium tuberculosis (MTB) marked a significant advancement. However, the need for a specific test with global application viability has propelled research into diagnostic tests based on molecular diagnostics, pulmonary immunity, epigenetics, metabolomics, and a current focus on next-generation MTB antigen-based skin test (TBST). It is within these emerging methods that the potential for accurate distinction between LTBI and active TB has been demonstrated. Therapeutically, in addition to traditional first-line therapies, anti-LTBI drugs, anti-resistant TB drugs, and innovative candidates in preclinical and clinical stages are being explored. Although the advancements are promising, it is crucial to recognize that further research and clinical evidence are needed to solidify the effectiveness and safety of these new approaches, in addition to ensuring access to new drugs and diagnostic methods across all health centers. The fight against TB is evolving with the development of more precise diagnostic tools that differentiate the various stages of the infection and with more effective and targeted treatments. Once consolidated, current advancements have the potential to transform the prevention and treatment landscape of TB, reinforcing the global mission to eradicate this disease.
Collapse
Affiliation(s)
- Christian Shleider Carnero Canales
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | - Jessica Marquez Cazorla
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | | | | | | | - Paulo Inácio Costa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| | - Cesar Augusto Roque-Borda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
13
|
Verma NK, Dewangan RP, Harioudh MK, Ghosh JK. Introduction of a β-leucine residue instead of leucine 9 and glycine 10 residues in Temporin L for improved cell selectivity, stability and activity against planktonic and biofilm of methicillin resistant S. aureus. Bioorg Chem 2023; 134:106440. [PMID: 36870201 DOI: 10.1016/j.bioorg.2023.106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023]
Abstract
Leucine and glycine residues, at the 9th and 10th positions of helical domain of naturally occurring antimicrobial peptide (AMP), Temporin L were substituted with an unnatural amino acid, β-leucine (homovaline) to improve its serum protease stability, haemolytic/cytotoxic properties and reduce the size to some extent. The designed analogue, L9βl-TL showed either equal or improved antimicrobial activity to TL against different microorganisms including the resistant strains. Interestingly, L9βl-TL also exhibited lower haemolytic and cytotoxic activities against human red blood cells and 3T3 cells, respectively. Moreover, L9βl-TL showed antibacterial activity in presence of 25% (v/v) human serum and showed resistance against proteolytic cleavage in presence of it that suggested the serum protease stability of the TL-analogue. L9βl-TL exhibited un-ordered secondary structures in both bacterial and mammalian membrane mimetic lipid vesicles as compared to the helical structures of TL in these environments. However, tryptophan fluorescence studies demonstrated more selective interaction of L9βl-TL with bacterial membrane mimetic lipid vesicles in comparison to non-selective interactions of TL with both kinds of lipid vesicles. Membrane depolarization studies with live MRSA and bacterial membrane-mimetic lipid vesicles suggested a membrane-disrupting mode of action of L9βl-TL. L9βl-TL showed faster bactericidal mechanism compared to TL against MRSA. Interestingly, L9βl-TL was found as more potent than TL either in inhibiting biofilm formation or in eradicating the mature biofilm formed by MRSA. Overall, the present work demonstrates a simple and useful strategy to design of an analogue of TL, with minimal modifications while maintaining its antimicrobial activity with lesser toxicity and higher stability which could be attempted for other AMPs as well.
Collapse
Affiliation(s)
- Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Munesh Kumar Harioudh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
14
|
Li S, Wang M, Chen S, Ampomah-Wireko M, Gao C, Xia Z, Nininahazwe L, Qin S, Zhang E. Development of biaromatic core-linked antimicrobial peptide mimics: Substituent position significantly affects antibacterial activity and hemolytic toxicity. Eur J Med Chem 2023; 247:115029. [PMID: 36549113 DOI: 10.1016/j.ejmech.2022.115029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The development of bacterial resistance to the majority of clinically significant antimicrobials has made it more difficult to treat bacterial infections with conventional antibiotics. As part of ongoing research on antimicrobial peptide mimetics, a series of quaternary ammonium cationic compounds with various linkers were designed and synthesized, with some demonstrating high antibacterial activity against Gram-negative and Gram-positive bacteria. The structure-activity relationship study revealed that the spatial position of substituents had a significant impact on antibacterial activity and hemolytic toxicity. The best compound, 3e, has good antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC = 1 μg/mL)] and the least hemolytic toxicity [hemolytic concentration (HC50 = 905 μg/mL)], is stable in mammalian body fluids, and rarely induces bacterial resistance. The mechanism study revealed that the membrane action mode may be its potential bactericidal mechanism, and it can effectively cause the accumulation of intracellular reactive oxygen species (ROS) for killing bacteria. Importantly, 3e can effectively reduce the load of methicillin-resistant Staphylococcus aureus (MRSA) in mouse skin and has a higher in vivo bactericidal efficiency than vancomycin. These findings highlight the significance of divergent linkers in quaternary ammonium cations as antimicrobial peptide mimics and the potential of these cations to treat bacterial infections.
Collapse
Affiliation(s)
- Sen Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ziwei Xia
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, PR China.
| |
Collapse
|
15
|
Yang J, Jiang L, Tian J, Yu S, Yu X, Pu L. Fluorous Phase-Enhanced Fluorescent Sensitivity for Enantioselective Recognition of Lysine. Org Lett 2022; 24:9327-9331. [PMID: 36508501 DOI: 10.1021/acs.orglett.2c03962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel fluorinated chiral dialdehyde (S,S)-1, prepared from (S,S)- or (R,R)-2,6-bis(1-hydroxyethyl)pyridine and 2-naphthol containing a highly fluorinated alkyl group, is found to show enantioselective and chemoselective fluorescent recognition of lysine in the fluorous phase. We discovered that the fluorous phase greatly enhances the fluorescent sensitivity and selectivity of the probe. Thus, the fluorous phase not only can allow the fluorescence measurement to be conducted away from common organic and aqueous media to minimize undesirable interference but also can provide a unique environment to greatly improve the selective fluorescent response.
Collapse
Affiliation(s)
- Jiaqiao Yang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Le Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jun Tian
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shanshan Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Shen BY, Wang MM, Xu SM, Gao C, Wang M, Li S, Ampomah-Wireko M, Chen SC, Yan DC, Qin S, Zhang E. Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics. Eur J Med Chem 2022; 244:114885. [DOI: 10.1016/j.ejmech.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
17
|
Circulating Chemerin and Its Kinetics May Be a Useful Diagnostic and Prognostic Biomarker in Critically Ill Patients with Sepsis: A Prospective Study. Biomolecules 2022; 12:biom12020301. [PMID: 35204801 PMCID: PMC8869693 DOI: 10.3390/biom12020301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Chemerin, a novel adipokine, is a potent chemoattractant molecule with antimicrobial properties, implicated in immune responses. Our aim was to investigate circulating chemerin and its kinetics, early in sepsis in critically ill patients and its association with severity and prognosis. Serum chemerin was determined in a cohort of 102 critically ill patients with sepsis during the first 48 h from sepsis onset and one week later, and in 102 age- and gender-matched healthy controls. Patients were followed for 28 days and their outcomes were recorded. Circulating chemerin was significantly higher in septic patients at onset compared to controls (342.3 ± 108.1 vs. 200.8 ± 40.1 μg/L, p < 0.001). Chemerin decreased significantly from sepsis onset to one week later (342.3 ± 108.1 vs. 308.2 ± 108.5 μg/L, p < 0.001), but remained higher than in controls. Chemerin was higher in patients presenting with septic shock than those with sepsis (sepsis onset: 403.2 ± 89.9 vs. 299.7 ± 99.5 μg/L, p < 0.001; one week after: 374.9 ± 95.3 vs. 261.6 ± 91.9 μg/L, p < 0.001), and in nonsurvivors than survivors (sepsis onset: 427.2 ± 96.7 vs. 306.9 ± 92.1 μg/L, p < 0.001; one week after: 414.1 ± 94.5 vs. 264.2 ± 79.9 μg/L, p < 0.001). Moreover, patients with septic shock and nonsurvivors, presented a significantly lower absolute and relative decrease in chemerin one week after sepsis onset compared to baseline (p < 0.001). Based on ROC curve analyses, the diagnostic performance of chemerin (AUC 0.78, 95% CI 0.69–0.87) was similar to C-reactive protein (CRP) (AUC 0.78, 95% CI 0.68–0.87) in discriminating sepsis severity. However, increased chemerin at sepsis onset and one week later was an independent predictor of 28-day mortality (sepsis onset: HR 3.58, 95% CI 1.48–8.65, p = 0.005; one week after: HR 10.01, 95% CI 4.32–23.20, p < 0.001). Finally, serum chemerin exhibited significant correlations with the severity scores, white blood cells, lactate, CRP and procalcitonin, as well as with biomarkers of glucose homeostasis, but not with cytokines and soluble urokinase-type plasminogen activator receptor (suPAR). Circulating chemerin is increased early in sepsis and its kinetics may have diagnostic and prognostic value in critically ill patients. Further studies are needed to shed light on the role of chemerin in sepsis.
Collapse
|