1
|
Liu X, Yan K, Wen J, Li Q, Shang W, Yu X, Wang X. Rhodium-catalyzed C-H activation and three-component tandem annulation leading to isoquinolones. Org Biomol Chem 2025; 23:4694-4701. [PMID: 40235456 DOI: 10.1039/d5ob00419e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A rhodium-catalyzed C-H activation and three-component coupling of oxazolines, vinylene carbonate and carboxylic acids has been developed. Various isoquinolone products were constructed under redox-neutral conditions with satisfactory yields. It is worth noting that diverse bioactive carboxylic acids have been proven to be effective substrates, and their application in this protocol has expanded the range of isoquinolones with biologically relevant motifs. Multi-dimensional mechanism exploration experiments and derivatization reactions were studied in sequence to explore the details and application prospects of this transformation. It offers an alternative approach for the synthesis of useful isoquinolone derivatives.
Collapse
Affiliation(s)
- Xiao Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Qiuyun Li
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, P. R. China.
| | - Wenxu Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Xinming Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| |
Collapse
|
2
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
3
|
Zheng B, Wang YX, Wu ZY, Li XW, Qin LQ, Chen NY, Su GF, Su JC, Pan CX. Design, Synthesis and Bioactive Evaluation of Topo I/ c-MYC Dual Inhibitors to Inhibit Oral Cancer via Regulating the PI3K/AKT/NF-κB Signaling Pathway. Molecules 2025; 30:894. [PMID: 40005202 PMCID: PMC11858653 DOI: 10.3390/molecules30040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The significantly rising incidence of oral cancer worldwide urgently requires the identification of novel, effective molecular targets to inhibit the progression of malignancy. DNA topoisomerase I (Topo I) is a well-established target for cancer treatment, and many studies have shown that different cancer cell genes could be targeted more selectively with one type of Topo I inhibitor. In this report, a new scaffold pyridothieno[3,2-c]isoquinoline 11,11-dioxide was designed via the combination of the key fragment or bioisoster of Topo I inhibitor azaindenoisoquinolines and G-quadruplex binder quindoline. Thirty-two target derivatives were synthesized, among which compounds 7be, with potent Topo I inhibition, exhibited effective antiproliferative activity against Cal27, one of the oral cancer cell lines highly expressing Topo I protein. Further studies indicated that 7be could also inhibit the activation of PI3K/AKT/NF-κB pathway and downregulate the level of c-MYC, repress the colony formation and the migration of Cal27 cells and trigger apoptosis and autophagy. Molecular docking indicated that 7be could interact with the complex of Topo I and DNA via a mode similar to the indenoisoquinolines. The results of the Cal27 xenograft model confirmed that 7be exhibited promising anticancer efficacy in vivo, with tumor growth inhibition (TGI) of 64.7% at 20 mg/kg.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; (B.Z.); (Y.-X.W.); (Z.-Y.W.); (X.-W.L.); (L.-Q.Q.); (N.-Y.C.); (G.-F.S.); (J.-C.S.)
| |
Collapse
|
4
|
Deng X, Wang Y, Yang X, Yu Q, Huang R, Chen H, Li W, He Y. Synthesis, Structural Modification, and Antismall Cell Lung Cancer Activity of 3-Arylisoquinolines with Dual Inhibitory Activity on Topoisomerase I and II. J Med Chem 2025; 68:3518-3546. [PMID: 39844445 DOI: 10.1021/acs.jmedchem.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
To overcome the compensatory effect between Topo I and II, one of the reasons accounting for the resistance of SCLC patients, we are pioneering the use of 3-arylisoquinolines to develop dual inhibitors of Topo I/II for the management of SCLC. A total of 46 new compounds were synthesized. Compounds 3g (IC50 = 1.30 μM for NCI-H446 cells and 1.42 μM for NCI-H1048 cells) and 3x (IC50 = 1.32 μM for NCI-H446 cells and 2.45 μM for NCI-H1048 cells) were selected for detailed pharmacological investigation, due to their outstanding cytotoxicity and dual Topo I and II inhibitory activity. 3g and 3x effectively prevent SCLC cell proliferation, invasion, and migration in vitro, byinducing mitochondrial apoptosis and inhibiting the PI3K/Akt/mTOR pathway. Their in vivo tumor inhibition rate is comparable to etoposide with lower toxicity. These results indicated their potential therapeutic values as dual Topo I and II inhibitors for treating SCLC.
Collapse
Affiliation(s)
- Xuemei Deng
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yuying Wang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiongqi Yang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
5
|
Basak S, Paul T, Nanjegowda MV, Punniyamurthy T. Integrating C-H activation/2-fold annulation: a modular access to heteroaryl-tethered oxazoloisoquinolinones. Chem Commun (Camb) 2025; 61:1693-1696. [PMID: 39749872 DOI: 10.1039/d4cc06123c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A cascade C-H activation/2-fold annulation of 2-aryloxazolines with pyridotriazoles has been achieved employing Rh-catalysis to afford heteroaryl-tethered oxazoloisoquinolinones. The synergistic annulations, functional group tolerance, and late-stage skeletal editing of the bioactive scaffolds are the salient practical features.
Collapse
Affiliation(s)
- Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Maniya V Nanjegowda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
6
|
Arora S, Upadhayay S, Kumar P, Kumar P, Kumar R. Design, synthesis and anticancer evaluation of 4-Substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines as dual topoisomerase I and II inhibitors. Bioorg Chem 2025; 154:108043. [PMID: 39705937 DOI: 10.1016/j.bioorg.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
In this study, we herein report the design, synthesis, and anticancer assessment of a series of new 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. The synthesis involved key intermediates such as the 2-aminoester derivative, which underwent a series of reactions to produce compounds 7a-7t. The optimized SNAr reactions, utilizing microwave irradiation in DMF, led to high yields and efficient preparation of the desired compounds. The biological evaluation revealed significant cytotoxicity of compounds 7b and 7t against MCF-7 breast cancer cell lines with IC50 values of 8.80 ± 0.08 and 7.45 ± 0.26 µM, respectively, demonstrating superior activity to standard controls like camptothecin and etoposide. Both the compounds exhibited dual topoisomerase I and II inhibition (7t > 7b), enhanced reactive oxygen species (ROS) generation in cancer cells, and halted cell cycle at the G2/M phase. Molecular docking and dynamics simulations further supported the higher binding affinity of compound 7t to topoisomerase enzymes compared to 7b and standard compounds. In silico ADME profiling of 7b and 7t confirmed their drug-likeness, while DFT calculations provided insight into their electronic properties.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pradeep Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India.
| |
Collapse
|
7
|
Liang M, Yan S, Xu Y, Ma C, Zhang X, Fan X. Synthesis of CF 3-Isoquinolinones and Imidazole-Fused CF 3-Isoquinolinones Based on C-H Activation-Initiated Cascade Reactions of 2-Aryloxazolines. J Org Chem 2024; 89:10180-10196. [PMID: 38963050 DOI: 10.1021/acs.joc.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Presented herein are novel syntheses of CF3-isoquinolinones and imidazole fused CF3-isoquinolinones based on the cascade reactions of 2-aryloxazolines with trifluoromethyl imidoyl sulfoxonium ylides. The formation of CF3-isoquinolinone involves an intriguing cascade process including oxazolinyl group-assisted aryl alkylation through C(sp2)-H bond metalation, carbene formation, migratory insertion, and proto-demetalation followed by intramolecular condensation and water-promoted oxazolinyl ring-scission. With this method, the isoquinolinone scaffold tethered with valuable functional groups was effectively constructed. By taking advantage of the functional groups embedded therein, the products thus obtained could be readily transformed into imidazole-fused CF3-isoquinolinones or coupled with some clinical drugs to furnish hybrid compounds with potential applications in drug development. In general, the developed protocols feature expeditious and convenient formation of valuable CF3-heterocyclic skeletons, broad substrate scope, and ready scalability. In addition, studies on the activity of selected products against some human cancer cell lines demonstrated their potential as lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Miaomiao Liang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuanshuang Xu
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chunhua Ma
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Liang HT, Yan JY, Yao HJ, Zhang XN, Xing ZM, Liu L, Chen YQ, Li GR, Huang J, He YD, Zheng KW. G-quadruplexes on chromosomal DNA negatively regulates topoisomerase 1 activity. Nucleic Acids Res 2024; 52:2142-2156. [PMID: 38340342 PMCID: PMC10954455 DOI: 10.1093/nar/gkae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Collapse
Affiliation(s)
- Hui-ting Liang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiang-yu Yan
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hao-jun Yao
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xue-nan Zhang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhi-ming Xing
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao-qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guo-rui Li
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jing Huang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yi-de He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Khodair AI, El-Hallouty SM, Cagle-White B, Abdel Aziz MH, Hanafy MK, Mowafy S, Hamdy NM, Kassab SE. Camptothecin structure simplification elaborated new imidazo[2,1-b]quinazoline derivative as a human topoisomerase I inhibitor with efficacy against bone cancer cells and colon adenocarcinoma. Eur J Med Chem 2024; 265:116049. [PMID: 38185054 DOI: 10.1016/j.ejmech.2023.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Camptothecin is a pentacyclic natural alkaloid that inhibits the hTop1 enzyme involved in DNA transcription and cancer cell growth. Camptothecin structure pitfalls prompted us to design new congeners using a structure simplification strategy to reduce the ring extension number from pentacyclic to tetracyclic while maintaining potential stacking of the new compounds with the DNA base pairs at the Top1-mediated cleavage complex and aqueous solubility, as well as minimizing compound-liver toxicity. The principal axis of this study was the verification of hTop1 inhibiting activity as a possible mechanism of action and the elaboration of new simplified inhibitors with improved pharmacodynamic and pharmacokinetic profiling using three structure panels (A-C) of (isoquinolinoimidazoquinazoline), (imidazoquinazoline), and (imidazoisoquinoline), respectively. DNA relaxation assay identified five compounds as hTop1 inhibitors belonging to the imidazoisoquinolines 3a,b, the imidazoquinazolines 12, and the isoquinolinoimidazoquinazolines 7a,b. In an MTT cytotoxicity assay against different cancer cell lines, compound 12 was the most potent against HOS bone cancer cells (IC50 = 1.47 μM). At the same time, the other inhibitors had no detectable activity against any cancer cell type. Compound (12) demonstrated great penetrating power in the HOS cancer cells' 3D-multicellular tumor spheroid model. Bioinformatics research of the hTop1 gene revealed that the TP53 cell proliferative gene is in the network of hTop1. The finding is confirmed empirically using the gene expression assay that proved the increase in p53 expression. The impact of structure simplification on compound 12 profile, characterized by the absence of acute oral liver toxicity when compared to Doxorubicin as a standard inhibitor, the lethal dose measured on Swiss Albino female mice and reported at LD50 = 250 mg/kg, and therapeutic significance in reducing colon adenocarcinoma tumor volume by 75.36 % after five weeks of treatment with compound 12. The molecular docking solutions of the active CPT-based derivative 12 and the inactive congener 14 into the active site of hTop1 and the activity cliffing of such MMP directed us to recommend the addition of HBD and HBA variables to compound 12 imidazoquinazoline core scaffold to enhance the potency via hydrogen bond formation with the major groove amino acids (Asp533, Lys532) as well as maintaining the hydrogen bond with the minor groove amino acid Arg364.
Collapse
Affiliation(s)
- Ahmed I Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| | - Brittnee Cagle-White
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, TX 75799, USA
| | - May H Abdel Aziz
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, TX 75799, USA
| | - Mahmoud Kh Hanafy
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt; Research Centre for Idling Brain Science, Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 930-0194, Japan
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt
| | - Nadia M Hamdy
- Biochemistry Dept., Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt.
| |
Collapse
|
10
|
Halder P, Iqubal A, Mondal K, Mukhopadhyay N, Das P. Carbonylative Transformations Using a DMAP-Based Pd-Catalyst through Ex Situ CO Generation. J Org Chem 2023; 88:15218-15236. [PMID: 37874889 DOI: 10.1021/acs.joc.3c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A phosphine-free, efficient protocol for aminocarbonylation and carbonylative Suzuki-Miyaura coupling has been developed using a novel palladium complex, [PdII(DMAP)2(OAc)2]. The complex was successfully synthesized using a stoichiometric reaction between PdII(OAc)2 and DMAP in acetone at room temperature and characterized using single-crystal X-ray analysis. Only 5 mol % catalyst loading was sufficient for effective carbonylative transformations. "Chloroform-COware" chemistry was utilized for safe and facile insertion of the carbonyl unit using chloroform as an inexpensive CO source in a two-chamber setup. Various value-added pharmaceutically relevant compounds such as CX-516, CX-546, and farampator were synthesized using the technique. Furthermore, the commercially designed COware was engineered to COware-RB setup for sequential one-pot synthesis of indenoisoquinolines (topoisomerase I inhibitors).
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Narottam Mukhopadhyay
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
11
|
Yakkala PA, Penumallu NR, Shafi S, Kamal A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel) 2023; 16:1456. [PMID: 37895927 PMCID: PMC10609717 DOI: 10.3390/ph16101456] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Topoisomerases are very important enzymes that regulate DNA topology and are vital for biological actions like DNA replication, transcription, and repair. The emergence and spread of cancer has been intimately associated with topoisomerase dysregulation. Topoisomerase inhibitors have consequently become potential anti-cancer medications because of their ability to obstruct the normal function of these enzymes, which leads to DNA damage and subsequently causes cell death. This review emphasizes the importance of topoisomerase inhibitors as marketed, clinical and preclinical anti-cancer medications. In the present review, various types of topoisomerase inhibitors and their mechanisms of action have been discussed. Topoisomerase I inhibitors, which include irinotecan and topotecan, are agents that interact with the DNA-topoisomerase I complex and avert resealing of the DNA. The accretion of DNA breaks leads to the inhibition of DNA replication and cell death. On the other hand, topoisomerase II inhibitors like etoposide and teniposide, function by cleaving the DNA-topoisomerase II complex thereby effectively impeding the release of double-strand DNA breaks. Moreover, the recent advances in exploring the therapeutic efficacy, toxicity, and MDR (multidrug resistance) issues of new topoisomerase inhibitors have been reviewed in the present review.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Naveen Reddy Penumallu
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, Hyderabad 500078, India
- Telangana State Council of Science & Technology, Environment, Forests, Science & Technology Department, Hyderabad 500004, India
| |
Collapse
|
12
|
Molinaro C, Wambang N, Pellegrini S, Henry N, Lensink MF, Germain E, Bousquet T, de Ruyck J, Cailliau K, Pélinski L, Martoriati A. Synthesis and Biological Activity of a New Indenoisoquinoline Copper Derivative as a Topoisomerase I Inhibitor. Int J Mol Sci 2023; 24:14590. [PMID: 37834037 PMCID: PMC10572568 DOI: 10.3390/ijms241914590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Topoisomerases are interesting targets in cancer chemotherapy. Here, we describe the design and synthesis of a novel copper(II) indenoisoquinoline complex, WN198. The new organometallic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231, HeLa, HT-29, and DU-145) with the lowest IC50 (0.37 ± 0.04 μM) for the triple-negative MDA-MB-231 breast cancer cell line. Below 5 µM, WN198 was ineffective on non-tumorigenic epithelial breast MCF-10A cells and Xenopus oocyte G2/M transition or embryonic development. Moreover, cancer cell lines showed autophagy markers including Beclin-1 accumulation and LC3-II formation. The DNA interaction of this new compound was evaluated and the dose-dependent topoisomerase I activity starting at 1 μM was confirmed using in vitro tests and has intercalation properties into DNA shown by melting curves and fluorescence measurements. Molecular modeling showed that the main interaction occurs with the aromatic ring but copper stabilizes the molecule before binding and so can putatively increase the potency as well. In this way, copper-derived indenoisoquinoline topoisomerase I inhibitor WN198 is a promising antitumorigenic agent for the development of future DNA-damaging treatments.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (M.F.L.); (J.d.R.); (K.C.)
| | - Nathalie Wambang
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (N.W.); (S.P.); (N.H.); (T.B.)
| | - Sylvain Pellegrini
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (N.W.); (S.P.); (N.H.); (T.B.)
| | - Natacha Henry
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (N.W.); (S.P.); (N.H.); (T.B.)
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (M.F.L.); (J.d.R.); (K.C.)
| | - Emmanuelle Germain
- Univ. Lille, Inserm U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France;
| | - Till Bousquet
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (N.W.); (S.P.); (N.H.); (T.B.)
| | - Jérôme de Ruyck
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (M.F.L.); (J.d.R.); (K.C.)
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (M.F.L.); (J.d.R.); (K.C.)
| | - Lydie Pélinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (N.W.); (S.P.); (N.H.); (T.B.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (M.F.L.); (J.d.R.); (K.C.)
| |
Collapse
|
13
|
Keller JG, Petersen KV, Mizielinski K, Thiesen C, Bjergbæk L, Reguera RM, Pérez-Pertejo Y, Balaña-Fouce R, Trejo A, Masdeu C, Alonso C, Knudsen BR, Tesauro C. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals (Basel) 2023; 16:ph16050657. [PMID: 37242440 DOI: 10.3390/ph16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Celine Thiesen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lotte Bjergbæk
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosa M Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Angela Trejo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Concepcion Alonso
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- VPCIR Biosciences ApS, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
14
|
Ramiro JL, Martínez-Caballero S, Neo AG, Díaz J, Marcos CF. The Castagnoli–Cushman Reaction. Molecules 2023; 28:molecules28062654. [PMID: 36985626 PMCID: PMC10058692 DOI: 10.3390/molecules28062654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Since the first reports of the reaction of imines and cyclic anhydrides by Castagnoli and Cushman, this procedure has been applied to the synthesis of a variety of lactams, some of them with important synthetic or biological interest. The scope of the reaction has been extended to the use of various Schiff bases and anhydrides as well as to different types of precursors for these reagents. In recent years, important advances have been made in understanding the mechanism of the reaction, which has historically been quite controversial. This has helped to develop reaction conditions that lead to pure diastereomers and even homochiral products. In addition, these mechanistic studies have also led to the development of new multicomponent versions of the Castagnoli–Cushman reaction that allow products with more diverse and complex molecular structures to be easily obtained.
Collapse
Affiliation(s)
- José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Sonia Martínez-Caballero
- Departamento de Didáctica de las Ciencias Experimentales y las Matemáticas, Facultad de Formación de Profesorado, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Ana G. Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
- Correspondence: (A.G.N.); (C.F.M.)
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Carlos F. Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
- Correspondence: (A.G.N.); (C.F.M.)
| |
Collapse
|
15
|
Yang Z, Liu J, Li Y, Ding J, Zheng L, Liu ZQ. Three-Component Synthesis of Isoquinolone Derivatives via Rh(III)-Catalyzed C–H Activation and Tandem Annulation. J Org Chem 2022; 87:14809-14818. [DOI: 10.1021/acs.joc.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuting Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jiawen Ding
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
16
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|