1
|
Artetxe-Zurutuza A, Iturrioz-Rodriguez N, Elizazu J, Toledano-Pinedo M, Porro-Pérez A, De Goñi I, Elua-Pinin A, Schäker-Hübner L, Azkargorta M, Elortza F, Iriepa I, Lòpez-Muñoz F, Moncho-Amor V, Hansen FK, Sampron N, Marco-Contelles JL, Matheu A. Generation and validation of a novel multitarget small molecule in glioblastoma. Cell Death Dis 2025; 16:250. [PMID: 40185715 PMCID: PMC11971462 DOI: 10.1038/s41419-025-07569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
The development of multitarget small molecules (MSMs) has emerged as a powerful strategy for the treatment of multifactorial diseases such as cancer. Glioblastoma is the most prevalent and malignant primary brain tumor in adults, which is characterized by poor prognosis and a high heterogeneity. Current standards of treatment present limited effectiveness, as patients develop therapy resistance and recur. In this work, we synthesized and characterized a novel multi-target molecule (named DDI199 or contilistat), which is a polyfunctionalized indole derivative developed by juxtaposing selected pharmacophoric moieties of the parent compounds Contilisant and Vorinostat (SAHA) to act as multifunctional ligands that inhibit histone deacetylases (HDACs), monoamine oxidases (MAOs) and cholinesterases (ChEs), and modulate histamine H3 (H3R) and Sigma 1 Receptor (S1R) receptors. DDI199 exerts high cytotoxic activity in conventional glioblastoma cell lines and patient-derived glioma stem cells in vitro. Importantly, it significantly reduces tumor growth in vivo, both alone and in combination with temozolomide (TMZ). The comparison with SAHA showed higher target specificity and antitumor activity of the new molecule. Transcriptomic and proteomic analyses of patient-derived glioma stem cells revealed a deregulation in cell cycle, DNA remodeling and neurotransmission activity by the treatment with DDI199. In conclusion, our data reveal the efficacy of a novel MSM in glioblastoma pre-clinical setting.
Collapse
Affiliation(s)
- Aizpea Artetxe-Zurutuza
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Nerea Iturrioz-Rodriguez
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Joseba Elizazu
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Mireia Toledano-Pinedo
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
| | - Alicia Porro-Pérez
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
| | - Irati De Goñi
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Alejandro Elua-Pinin
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Isabel Iriepa
- Alcala University, Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR); and DISCOBAC group, Castilla-La Mancha Health Research Institute (IDISCAM), Madrid, Spain
| | - Francisco Lòpez-Muñoz
- Faculty of Health Sciences-HM Hospitals, Camilo José Cela University; HM Hospitals Health Research Institute; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute, Madrid, Spain
| | - Veronica Moncho-Amor
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Nicolás Sampron
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Jose Luis Marco-Contelles
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ander Matheu
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain.
- Centre for Biomedical Network Research on frailty and healthy aging (CIBERFES), ISCIII, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Wei J, Wu BJ. Targeting monoamine oxidases in cancer: advances and opportunities. Trends Mol Med 2024:S1471-4914(24)00267-3. [PMID: 39438199 PMCID: PMC12010012 DOI: 10.1016/j.molmed.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Monoamine oxidases (MAOs) are a crucial pair of isoenzymes responsible for degrading monoamine neurotransmitters and dietary amines. In addition to extensive studies of their roles in the context of brain functions and disorders over decades, emerging evidence indicates that MAOs are also often dysregulated and associated with clinical outcomes in diverse cancers, with the ability to differentially regulate cancer growth, invasion, metastasis, progression, and therapy response depending on the cancer type. In this review, we summarize recent advances in understanding the clinical relevance, functional importance, and mechanisms of MAOs in a broad range of cancers, and discuss the application and therapeutic benefit of MAO inhibitors (MAOIs) for cancer treatment, highlighting the roles of MAOs as novel regulators, prognostic biomarkers, and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA.
| |
Collapse
|
3
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Paudel KR, Singh M, De Rubis G, Kumbhar P, Mehndiratta S, Kokkinis S, El-Sherkawi T, Gupta G, Singh SK, Malik MZ, Mohammed Y, Oliver BG, Disouza J, Patravale V, Hansbro PM, Dua K. Computational and biological approaches in repurposing ribavirin for lung cancer treatment: Unveiling antitumorigenic strategies. Life Sci 2024; 352:122859. [PMID: 38925223 DOI: 10.1016/j.lfs.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tammam El-Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait city 15462, Kuwait
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
5
|
Mo Q, Zhong T, Cao B, Han Z, Hu X, Zhao S, Wei X, Yang Z, Qin J. Dihydroxanthene-based monoamine oxidase A-activated photosensitizers for photodynamic/photothermal therapy of tumors. Eur J Med Chem 2024; 272:116474. [PMID: 38735149 DOI: 10.1016/j.ejmech.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.
Collapse
Affiliation(s)
- Qingyuan Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Institute of Standards and Technology, Nanning, 530200, PR China
| | - Tiantian Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Bingying Cao
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Zhongyao Han
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiaoyu Wei
- China Pharmaceutical University, School of Traditional Chinese Pharmacy, Nanjing, 211100, PR China
| | - Zhengmin Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
6
|
Sharma R, Chiang YH, Chen HC, Lin HY, Yang WB, Nepali K, Lai MJ, Chen KY, Liou JP, Hsu TI. Dual inhibition of CYP17A1 and HDAC6 by abiraterone-installed hydroxamic acid overcomes temozolomide resistance in glioblastoma through inducing DNA damage and oxidative stress. Cancer Lett 2024; 586:216666. [PMID: 38311053 DOI: 10.1016/j.canlet.2024.216666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Yi Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
7
|
Sharma S, Wang SA, Yang WB, Lin HY, Lai MJ, Chen HC, Kao TY, Hsu FL, Nepali K, Hsu TI, Liou JP. First-in-Class Dual EZH2-HSP90 Inhibitor Eliciting Striking Antiglioblastoma Activity In Vitro and In Vivo. J Med Chem 2024; 67:2963-2985. [PMID: 38285511 PMCID: PMC10895674 DOI: 10.1021/acs.jmedchem.3c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.
Collapse
Affiliation(s)
- Sachin Sharma
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Shao-An Wang
- School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Hsien-Chung Chen
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Neurosurgery, Shuang Ho Hospital, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Feng-Lin Hsu
- School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kunal Nepali
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei 110 Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei 110 Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
8
|
Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: Histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262:115879. [PMID: 37875056 DOI: 10.1016/j.ejmech.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
9
|
Tang H, Liang Y, Yu M, Cai S, Ding K, Wang Y. Discovery of chiral 1,4-diarylazetidin-2-one-based hydroxamic acid derivatives as novel tubulin polymerization inhibitors with histone deacetylase inhibitory activity. Bioorg Med Chem 2023; 92:117437. [PMID: 37563016 DOI: 10.1016/j.bmc.2023.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities. Meanwhile, 12a showed good antiproliferative activities against four tumor cell lines. Further studies showed 12a works through blocking cellular cycle, inducing apoptosis and inhibiting colony formation. In addition, 12a has suitable physicochemical properties and high liver microsomal metabolic stability. Importantly, compound 12a was found to exhibit significant antitumor efficacy in vivo, thus warranting it as a promising tubulin/HDAC dual inhibitor for further development.
Collapse
Affiliation(s)
- Hairong Tang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaowen Cai
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Nordio G, Piazzola F, Cozza G, Rossetto M, Cervelli M, Minarini A, Basagni F, Tassinari E, Dalla Via L, Milelli A, Di Paolo ML. From Monoamine Oxidase Inhibition to Antiproliferative Activity: New Biological Perspectives for Polyamine Analogs. Molecules 2023; 28:6329. [PMID: 37687158 PMCID: PMC10490032 DOI: 10.3390/molecules28176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 μM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 μM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.
Collapse
Affiliation(s)
- Giulia Nordio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesco Piazzola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| |
Collapse
|
11
|
Tseng HJ, Banerjee S, Qian B, Lai MJ, Wu TY, Hsu TI, Lin TE, Hsu KC, Chuang KH, Liou JP, Shih JC. Design, synthesis, and biological activity of dual monoamine oxidase A and heat shock protein 90 inhibitors, N-Methylpropargylamine-conjugated 4-isopropylresorcinol for glioblastoma. Eur J Med Chem 2023; 256:115459. [PMID: 37172473 PMCID: PMC10247544 DOI: 10.1016/j.ejmech.2023.115459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan
| | - Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Ph.D. Program in Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Ph.D. Program in Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Hsiang Chuang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC-Taiwan Center for Translational Research, Los Angeles, CA, 90089, United States.
| |
Collapse
|
12
|
Rationally designed donepezil-based hydroxamates modulate Sig-1R and HDAC isoforms to exert anti-glioblastoma effects. Eur J Med Chem 2023; 248:115054. [PMID: 36630883 DOI: 10.1016/j.ejmech.2022.115054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
The pursuit of activating the HDAC inhibitory template towards additional mechanisms spurred us to design dual modulators (Sig-1R agonist - HDAC inhibitor) via utilization of the core structural unit of donepezil (an FDA-approved anti-Alzheimer's agent) as a surface recognition part. Literature precedents coupled with our experience rendered us with several insights that led to the inclusion of chemically diverse linkers and hydroxamic acid (zinc-binding motif) as the other components of HDAC inhibitory pharmacophore. With this envisionment and clarity, donepezil-based HDAC inhibitory adducts were furnished and exhaustively explored for their anti-GBM efficacy. Resultantly, a magnificently potent HDAC inhibitor 10 [IC50 (HDAC6) = 2.7 nM, IC50 (HDAC2) = 0.71 μM] was pinpointed that was endowed with the ability to: i) exert cell growth inhibitory effects against Human U87MG GBM cells ii) cause death in TMZ-resistant GBM cells iii) induce subG1 arrest in GBM cells iv) prolong the survival of TMZ-resistant U87MG inoculated orthotopic mice (in-vivo studies) v) induce GBM cell apoptosis via binding to Sig-1R. Collectively, the results led to the identification of compound 10 as a tractable anti-GBM agent that deserves detailed investigation for the accomplishment of its candidature as a GBM therapeutic.
Collapse
|
13
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
14
|
Tang H, Liang Y, Shen H, Cai S, Yu M, Fan H, Ding K, Wang Y. Discovery of a 2,6-Diarylpyridine-Based Hydroxamic Acid Derivative as Novel Histone Deacetylase 8 and Tubulin Dual Inhibitor for the Treatment of Neuroblastoma. Bioorg Chem 2022; 128:106112. [DOI: 10.1016/j.bioorg.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
15
|
Liu K, Zhou S, Zhou J, Bo R, Wang X, Xu T, Yuan Y, Xu B. Discovery of 3, 6-disubstituted isobenzofuran-1(3H)-ones as novel inhibitors of monoamine oxidases. Bioorg Med Chem Lett 2022; 67:128748. [PMID: 35472505 DOI: 10.1016/j.bmcl.2022.128748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Monoamine oxidases A and B (MAO-A and MAO-B) play important roles in biogenic amine metabolism, oxidative stress, and chronic inflammation. Particularly, MAO-B selective inhibitors are promising therapeutic choices for the treatment of neurodegenerative diseases, such as Pakinson's disease and Alzheimer's disease. Herein, novel 3,6-disubstituted isobenzofuran-1(3H)-ones were designed, synthesized and evaluated in vitro as inhibitors of monoamine oxidases A and B. Structure-activity relationships were investigated, and all of the compounds with (R)-3-hydroxy pyrrolidine moiety on the 6-position displayed preferable inhibition toward the MAO-B isoform. Among them, compounds 6c with a 4'-fluorobenzyl ring and 6m bearing a 3',4'-difluorobenzyl ring on the 3-position were the most potent MAO-B inhibitors with IC50 values of 0.35 μM and 0.32 μM, respectively. The binding mode of compound 6m in MAO-B was predicted by CDOCKER program, revealing that (R)-3-hydroxypyrrolidine moiety is a critical structural feature for this series of MAO-B inhibitors. Compound 6m could serve as a new template structure for developing potent and selective MAO-B inhibitors.
Collapse
Affiliation(s)
- Kaiyue Liu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shiqi Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruxue Bo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tong Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|