2
|
Hashimoto S, Hosoi T, Yakabe M, Matsumoto S, Hashimoto M, Akishita M, Ogawa S. Exercise-induced vitamin D receptor and androgen receptor mediate inhibition of IL-6 and STAT3 in muscle. Biochem Biophys Rep 2024; 37:101621. [PMID: 38205185 PMCID: PMC10776921 DOI: 10.1016/j.bbrep.2023.101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Background Skeletal muscle produces interleukin-6 (IL-6) during exercise as a myokine. Although IL-6 is required for skeletal muscle regeneration, its action increases the expression of myostatin and other proteins involved in muscle atrophy, resulting in skeletal muscle atrophy. In this study, we clarified the effects exercise-induced vitamin D receptor (VDR) and androgen receptor (AR) expression on IL-6 and signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Method C2C12 myotubes were subjected to electric pulse stimulation (EPS) in vitro. To evaluate VDR and AR function, a VDR/AR agonist and antagonist were administered before EPS to C2C12 myotubes. C57BL6 mice underwent 4 weeks of exercise. The expression levels of proteolytic-associated genes, including CCAAT/enhancer-binding protein delta (C/EBPδ) and myostatin, were measured by quantitative real-time polymerase chain reaction, and phosphorylated and total STAT3 levels were measured by Western blot analysis. Result The expression of VDR and AR mRNA was induced following EPS in C2C12 myotubes. IL-6 mRNA expression was also increased with a peak at 6 h after EPS and p-STAT3/STAT3 ratio reciprocally decreased. Although VDR/AR agonist administration decreased IL-6 mRNA expression and p-STAT3/STAT3 ratio, these two endpoints increased after treatment with VDR/AR antagonist, respectively. Exercise in mice also increased the expression of VDR/AR and IL-6 mRNA and decreased p-STAT3/STAT3 ratio. Conclusion Exercise-induced VDR and AR expression results in the suppression of IL-6 mRNA and STAT3 phosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Seiji Hashimoto
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoya Matsumoto
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masayoshi Hashimoto
- Department of General Medicine, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Khazan N, Quarato ER, Singh NA, Snyder CWA, Moore T, Miller JP, Yasui M, Teramoto Y, Goto T, Reshi S, Hong J, Zhang N, Pandey D, Srivastava P, Morell A, Kawano H, Kawano Y, Conley T, Sahasrabudhe DM, Yano N, Miyamoto H, Aljitawi O, Liesveld J, Becker MW, Calvi LM, Zhovmer AS, Tabdanov ED, Dokholyan NV, Linehan DC, Hansen JN, Gerber SA, Sharon A, Khera MK, Jurutka PW, Rochel N, Kim KK, Rowswell-Turner RB, Singh RK, Moore RG. Vitamin D Receptor Antagonist MeTC7 Inhibits PD-L1. Cancers (Basel) 2023; 15:3432. [PMID: 37444542 PMCID: PMC10340436 DOI: 10.3390/cancers15133432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.
Collapse
Affiliation(s)
- Negar Khazan
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Emily R. Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Niloy A. Singh
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Cameron W. A. Snyder
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Taylor Moore
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - John P. Miller
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Masato Yasui
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Yuki Teramoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Jennifer Hong
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Naixin Zhang
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Diya Pandey
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Priyanka Srivastava
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Alexandra Morell
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Hiroki Kawano
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Yuko Kawano
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Thomas Conley
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Deepak M. Sahasrabudhe
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Naohiro Yano
- Division of Surgical Research, Rhode Island Hospital, Brown University, Providence, RI 02912, USA;
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Omar Aljitawi
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Jane Liesveld
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Michael W. Becker
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Laura M. Calvi
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Erdem D. Tabdanov
- CytoMechanobiology Laboratory, Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Center for Translational Systems Research, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - David C. Linehan
- Division of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeanne N. Hansen
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
| | - Scott A. Gerber
- Division of Surgery and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- School of Mathematical and Natural Sciences, Arizona State University, Health Futures Center, Phoenix, AZ 85054, USA
| | - Natacha Rochel
- Institute of Genetics and of Molecular and Cellular Biology, 67400 Illkirch-Graffenstaden, France
| | - Kyu Kwang Kim
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Rachael B. Rowswell-Turner
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Rakesh K. Singh
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Richard G. Moore
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| |
Collapse
|
4
|
Chen Z, Xie X, Chen W, Luo N, Li X, Yu F, Huang J. Facile access to the 2,2-difluoro-2,3-dihydrofuran skeleton without extra additives: DMF-promoted difluorocarbene formation of ClCF 2CO 2Na. Org Biomol Chem 2022; 20:8037-8041. [DOI: 10.1039/d2ob01542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A practical and facile difluorocarbene-triggered cycloaddition reaction of enaminones was developed, which delivered 2,2-difluoro-2,3-dihydrofurans without any extra additives.
Collapse
Affiliation(s)
- Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xin Xie
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaoning Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|